Журнал «Юный техник» - Юный техник, 2013 № 05

Здесь есть возможность читать онлайн «Журнал «Юный техник» - Юный техник, 2013 № 05» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2013, ISBN: 2013, Жанр: Технические науки, periodic, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Юный техник, 2013 № 05: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Юный техник, 2013 № 05»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Популярный детский и юношеский журнал.

Юный техник, 2013 № 05 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Юный техник, 2013 № 05», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако Серж Арош выяснил, что удержать фотон в некоем объеме все же возможно, заставив его метаться между двумя вогнутыми зеркалами сверхвысокого качества (вогнутость зеркал не позволяет фотону уйти в сторону).

Схема ловушки с захваченными в нее ионами Справа зеркало для медного - фото 20

Схема ловушки с захваченными в нее ионами. Справа — зеркало для медного микроволнового резонатора со сверхпроводящим ниобиевым покрытием, обладающим рекордно высокой добротностью.

Правда, слово «метаться» не совсем точно отражает ситуацию. Когда длина световой волны сравнима с расстоянием между зеркалами, фотон уже не перемещается между зеркалами, а, как бы дрожа, замирает между ними — получается стоячая световая волна, опирающаяся на зеркала. Такая система зеркал называется резонатором.

Качество удержания фотона характеризуется добротностью резонатора Q. Это число показывает, попросту говоря, сколько раз (фотон отразится от зеркал, прежде чем каким-то образом исчезнет. Еще лет 30–40 тому назад в распоряжении физиков были резонаторы с добротностью в миллионы, а сейчас она уже достигает десятков миллиардов. В таком резонаторе микроволновой фотон будет «жить» десятые доли секунды — огромный промежуток времени для современной экспериментальной физики. За это время можно и породить фотон, и воздействовать на него, и «просканировать» его состояние.

Схема того как возбужденный атом излучает фотон Стандартное изображение - фото 21

Схема того, как возбужденный атом излучает фотон. Стандартное изображение вылетающего фотона как объекта, локализованного на атомном масштабе (вверху), дает неправильное представление о «начальных» размерах фотона. Гораздо более предпочтительней картинка, на которой фотон изображен в виде облака с размерами намного больше атомных (внизу).

В парижской лаборатории Ароша фотоны «запускали» в небольшую камеру объемом три кубических сантиметра с зеркальными стенками. Один-единственный фотон, оказавшийся в камере, мог просуществовать в ней, отражаясь от зеркал и не рискуя быть поглощенным, столько времени, что успевал пробежать в среднем 40 000 км — то есть совершить как бы кругосветное путешествие.

Столь долгое время жизни фотона позволило осуществлять с ним квантовые манипуляции, выявить его наличие в камере в те или иные моменты времени, посчитать, сколько фотонов побывало в ловушке за определенный временной промежуток.

А возможность точного подсчета квантов света открывает принципиальную возможность для создания квантовых компьютеров, которые, по идее, на десятки порядков будут превосходить лучшие нынешние вычислительные комплексы. Они за считаные мгновения смогут решать задачи, на которые современная вычислительная техника тратит недели, а то и месяцы рабочего времени.

Принципиальная схема квантового компьютера работающего на цепочке холодных - фото 22

Принципиальная схема квантового компьютера, работающего на цепочке холодных ионов, плененных в ловушке. Световые импульсы управляют логическими операциями между ионами, а чувствительная фотокамера детектирует свечение отдельных ионов и тем самым считывает результат операций.

Если Серж Арош научился манипулировать квантами света — фотонами, то не менее трудная с технической точки зрения задача управляться и с отдельными ионами — атомами, лишенными одного или нескольких электронов.

Здесь тоже используют ловушки, только уже не фотонные, а ионные. В них заряженные частицы удерживает переменное электромагнитное поле определенной формы. Такая технология была разработана полвека назад и принесла своим создателям, Вольфгангу Паулю и Хансу Демельту, Нобелевскую премию по физике за 1989 год.

При этом было замечено, что пленение и квантовый контроль отдельных ионов может иметь и далеко идущие практические применения. Например, их колебания позволяют создать сверхстабильный стандарт частоты, построить сверхточные атомные часы.

А такие часы, в свою очередь, позволили проверить экспериментально некоторые выводы теории относительности. Так, скажем, согласно теории, время течет по-разному в гравитационном поле разной напряженности. При удалении от поверхности Земли гравитационное поле начинает ослабевать, поэтому скорость хода часов, расположенных на разной высоте, будет отличаться. Так вот исследователям удалось заметить это расхождение при разнице высот меньше метра!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Отзывы о книге «Юный техник, 2013 № 05»

Обсуждение, отзывы о книге «Юный техник, 2013 № 05» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x