В лабораторных условиях исследователи смогли совместить человеческую кожу и паучью нить. Получившийся материал при этом действительно способен наделить людей суперспособностями. Например, отражать пули калибра 5,66.
Испытания показали, что кусок синтетической кожи, выращенной в лаборатории, выстоял под ударом свинца. Ради этого момента, который можно увидеть только при замедлении сверхскоростной съемки, ученые со всего мира упорно трудились около года.
«Когда выяснилось, что паутину можно использовать для производства бронежилетов, я подумала: «Зачем себя ограничивать?» — рассказала о том, как родилась идея, руководитель проекта Джалила Эссаиди. — Почему бы не вживить паутинную нить сразу в человеческую кожу? Если бы гены пауков стали частью нашего генома, то люди, наверное, стали бы пуленепробиваемыми?»
Заданные вопросы требовали ответов. Однако эксперименты с человеческим геномом в мировой науке запрещены, так что материал решили синтезировать в лаборатории. Искусственную кожу ученые выращивают уже давно. А как добавить гены паука, рассказали американские генетики из университета штата Юта, которые освоили опыт канадцев.
Кожу исследовали в лаборатории.
Самый ответственный момент испытаний — пуля атакует кожу.
Шесть месяцев работы, использование генетически модифицированных насекомых и специального текстильного оборудования — все это только для того, чтобы произвести небольшой кусочек ткани. Получился материал, который превосходит по своим качествам кевлар, который сейчас используют в производстве бронежилетов.
Следующий этап — пересадка куска пуленепробиваемой кожи живому человеку. Добровольцев, несмотря на этическую сомнительность открытия, нашлось множество.
Но военные не заинтересовались шедевром биотехнологии. Во-первых, потому, что создавать бронежилеты намного дешевле, чем искусственную кожу, которую затем еще надо вживлять людам. Во-вторых, неизвестно, как затем поведет себя пересаженная кожа. В-третьих, как показал опыт, в те же кевларовые жилеты приходится монтировать вставки из особо прочной керамики, иначе пуля, даже не пробив кевлар, может все же нанести человеку увечье.
В общем, как сказал Абдул эль-Галбзуриа, профессор Центра медицины университета Лейдена, «с научной точки зрения, гораздо интереснее и важнее выяснить, как клетки кожи уживаются с паутиной, чтобы мы могли научиться пересаживать эту кожу жертвам ожогов или использовать те же нити в хирургии для наложения швов, чем мудрить с бронежилетами». Да и сама Джалила Эссаиди созналась, что главная цель их работы — привлечь внимание публики к возможностям современной биотехнологии.
Лауреатом Нобелевской премии по химии за 2011 год стал ученый из Израиля Даниель Шехтманза работу, которую в 1982 году сделал практически в одиночку.
Путь профессора в науку был вполне традиционен. Дан Шехтман родился в 1941 году в г. Тель-Авиве. В 1972 году окончил Израильский технологический институт в Хайфе. С тех пор он работает в том же институте исследователем. Кроме того, Д. Шехтман — профессор израильского технологического института Технион в Хайфе, а также сотрудник департамента энергетики США и профессор в Университете штата Айова.
Свою награду он получил «за открытие квазикристаллов». Так сказано в пресс-релизе Нобелевского комитета. Однако обосновавшие свое решение члены этого комитета сочли необходимым пояснить, что профессор из Хайфы открыл нечто, что «потрясает основы представления о том, как устроено твердое тело».
И вот здесь, наверное, необходимы пояснения. А дело было так. В начале 1982 года Шехтман был отправлен на научную стажировку в США, в Национальное бюро стандартов. Здесь он и проводил эксперименты по изучению кристаллической решетки сплава алюминия и марганца с помощью электронного микроскопа.
Всем, наверное, известно, что любой объект в нашем мире, даже мы с вами, состоит из молекул и атомов. В твердых телах атомы расположены в строгом порядке, определяемом так называемой кристаллической решеткой. Увидеть эту решетку невооруженным глазом нельзя — уж слишком невелики атомы и расстояния между ними. И микроскоп, даже электронный, помогает слабо. А потому судят о строении решетки еще и по данным рентгено-структурного анализа.
Читать дальше