Хлопоты с баллонами
Экспериментальное использование водорода на авто- и авиационном транспорте уже показало: баллоны с водородом даже под давлением 200 бар слишком громоздки, для них приходится предусматривать места на крышах автобусов и специальных надстройках на фюзеляжах авиалайнеров. Более того, газовый баллон под таким давлением — это фактически бомба, при любом происшествии она может взорваться.
Потому сотрудники Технического университета в Дрездене разработали баллоны, которые способны при тех же габаритах и давлении вмещать большее количество газа. А для этого они… заполнили весь баллон особым порошком.
«Это особый высокопористый порошок, — поясняет профессор Стефан Карстен. — Поры диаметром около одного нанометра активно поглощают газ. В результате смесь в баллоне приобретает некое квазижидкое состояние, что позволяет в том же объеме разместить примерно вдвое больше газа. При этом давление в баллоне не 200, а всего 20 атмосфер».
Поглощают водород и материалы с так называемыми металлокаркасными структурами. Каждый такой молекулярный каркас из цинка и кислородосодержащих соединений металлов способен удержать до девяти молекул водорода, однако это число может быть увеличено в 4 раза, если добавить в структуру дополнительные углеродные кольца.
Еще одно преимущество: баллон низкого давления может быть той же формы, что и обычный бак. Да и вообще емкости для газа можно разместить в любом более-менее подходящем месте автомобиля.
Впрочем, это пока теория. Все заправки рассчитаны на давление газа в баллоне 200 бар. А при таком давлении металлокаркасные структуры, как ни странно, позволяют увеличить емкость баллона всего на 20 %, что не такой уж большой выигрыш. Масса же баллона с порошком на 50–80 кг больше, чем масса пустого.
Есть и еще одна проблема. Баллоны с порошком при заправке газом сильно нагреваются, и это требует специальных мер предосторожности.
Как «связать» газ?
Именно потому многие исследователи предлагают хранить водород в так называемом связанном состоянии. Наиболее перспективны для этого металлические гидриды, полагает руководитель программы по исследованию водорода из Ок-Риджской национальной лаборатории США, доктор Тимоти Армстронг. «Водород входит в гидрид металла и занимает межузлие в его кристаллической структуре», — говорит он.
Однако и здесь свои проблемы. Когда водород входит в металл, выделяется тепло и баллон сильно нагревается. Когда же нужно высвободить водород, то приходится подогревать уже сам баллон. А на это опять-таки приходится расходовать дополнительную энергию. Да и количество водорода в такой структуре не так уж велико — до 10 % от общего объема.
Поэтому специалисты стараются отыскать новые способы удержания водорода до поры до времени в некой «ловушке». Очередной шаг сделали наши специалисты из ООО «Энвайрокет». В.И. Богдан и его коллеги в 2004 году получили патент на каталитический композитный материал для хранения водорода. Более того, они нашли еще способ хранения газа на основе реакций гидрирования-дегидрирования органических соединений.
Говоря проще, вместо того, чтобы применять, скажем, гидрид магния или дорогостоящие комплексы иридия, а также платиновые катализаторы, наши специалисты предлагают использовать полимеры на основе полистирола или полиацетилена. Они образуют в смеси с водородом некий органический субстрат, который прекрасно хранится в порах, скажем, того же активированного угля. Получается эффективно и дешево.
Первые автомобили на водороде уже ездят.
Наконец, недавно группа исследователей из университета штата Миссури и их коллеги из Исследовательского центра г. Канзас придумали, как хранить газ в… кукурузных початках! Точнее, использовать сердцевины початков, которые обычно используют разве что в качестве топлива. Оказывается, если их подвергнуть обработке по специальной рецептуре, то можно опять-таки получить углеродные брикеты — аналог активированного угля — с порами-отверстиями величиной в нанометры, куда можно закачивать газ.
При этом, как показали опыты, брикеты способны аккумулировать метан или водород, объем которого в 180 раз превышает собственный объем брикета! Причем для хранения используется давление в 7 раз меньше, чем в стальных баллонах — около 35 бар вместо обычных 200.
Читать дальше