Варианты патентования наноматериалов рассмотрим на примерах материалов, в которые входят наночастицы, углеродных нанотрубок и графенов, а также жидкостей, в которых включения разделены до наноразмерных частиц.
3.1. Материалы, содержащие наночастицы
Эти наноматериалы включают в себя огромное количество объектов, содержащих наночастицы, благодаря которым они приобретают уникальные свойства. Это могут быть полимеры, клеи, покрытия, биологически активные добавки, косметические средства, медицинские препараты и многое другое. Патентование таких объектов, материалов и способов не является особо сложной задачей, так как неизвестный ранее признак, приводящий к новому эффекту, и в обычных материалах является достаточным аргументом для получения патента.
Рассмотрим патентование наноматериалов на примере способа получения биологически активного вещества на основе природных объектов [5]. В одном из вариантов гомогенизацию исходной субстанции проводят до получения нанодисперсных частиц, которое приводит к повышению эффективности конечного продукта. Однако, несмотря на коммерческую целесообразность введения в название и первый пункт формулы изобретения процесса нанодиспергирования, было принято решение о его введении в зависимый пункт формулы. Это было сделано потому, что и без него исходный процесс обеспечивал получение достаточно качественного продукта и если бы получение нанодисперсных частиц было включено в первый пункт формулы изобретения, то его неиспользование все равно позволило бы конкурентам выпускать достаточно качественный продукт и при этом выйти из-под действия этого патента.
В другом варианте рассмотрим состав для придания волокнистым материалам антимикробных и фунгицидных свойств [6]. В этом случае наночастицы серебра уже должны были входить в первый независимый пункт формулы, так как это явилось основным отличительным признаком изобретения. При этом был назначен достаточно широкий диапазон количественного состава наночастиц серебра в растворе. Этот прием используется и для обычных материалов, однако для наноматериалов есть своя специфика выбора верхней границы диапазона. Наноматериалы часто бывают дорогими и превышение их концентраций может быть экономически нецелесообразным. Кроме этого, они достаточно активны и даже небольшое превышение концентрации может привести к нежелательным результатам. Дополнительная защита этого решения была обеспечена введением второго независимого пункта формулы изобретения, касающегося способа введения наночастиц серебра в раствор.
Таким образом, при патентовании наноматериалов не всегда обязательно вводить нанопризнаки в первый независимый пункт формулы изобретения. Кроме этого, целесообразно сделать максимальную защиту своего изобретения, используя свойства наночастиц, благодаря разумному расширению диапазона их процентного содержания в составе вещества.
3.2. Углеродные нанотрубки
С момента первого получения углеродных нанотрубок (УНТ) в 1991 г в компании NEC (Япония) при распылении графита в электрической дуге довольно быстро были разработаны различные устройства и способы их получения [7, 8, 9, 10]. В этих устройствах рабочий углеродосодержащий газ, подаваемый в камеру, разлагался под действием температуры на каталитической поверхности с образованием УНТ. Причем эти и некоторые другие способы, описанные в первых патентах, включили почти все возможные варианты. Тем не менее, часто для продвижения своего продукта на рынок необходимо его патентовать. А как быть, если почти все способы получения УНТ оказались уже запатентованы. Основной подход к патентованию оборудования и не только нанотехнологического в этом случае может состоять в защите его не основных характеристик, таких, как безопасность работы, удобство эксплуатации и т. п. Это и было осуществлено в патенте [11]. На рис. 3.1 представлена схема устройства роста углеродных нанотрубок. В этом устройстве реакционная камера 1 была выполнена с возможностью съема с основания 2, что обеспечило удобство профилактической чистки камеры 1. Нагреватель 3за счет своей формы мог обеспечивать нагрев образца 4 и одновременно обезгаживание камеры 1. Устройство было снабжено модулем оптического воздействия 5 на образец 4, позволяющее воздействовать на процесс и его контролировать. Кроме этого, модуль 5 был оптически сопряжен с образцом 4 через канал 6 подвода парогазовой смеси от блока 7, что упростило конструкцию.
Читать дальше
Конец ознакомительного отрывка
Купить книгу