Впрочем, едва ли. Возможно, что некоторым наиболее часто повторяющимся в белке аминокислотам соответствует не одна, а несколько разных кодовых групп. Одна и та же аминокислота может сесть на поверхность РНК и там, где друг за другом следуют азотистые основания в такой, говоря к примеру, последовательности — АГЦ и в такой — АЦГ, но нигде больше: никакое другое слово генетического алфавита ее не привлечет.
Итак, мы установили, что в генетическом алфавите всего четыре буквы, а все слова, из них составленные, трехбуквенные. Не правда ли, не верится, что этих символов и слов достаточно, чтобы закодировать весь бесконечно разнообразный план строения организма — от синтеза специфических для его тела белков до цвета глаз и свойств характера?
Слов, которыми записаны генетические фразы, очень много. В некоторых молекулах ДНК до 30 тысяч азотистых оснований. Число их взаимных сочетаний поистине бесконечно. Ведь если бы даже азотистых оснований в каждой ДНК было всего по сто, полная коллекция их различных сочетаний достигла бы 4 100. Четыре в сотой степени! Это больше, чем атомов во всей Солнечной системе!
А ведь молекулы ДНК содержат не сто, а тысячи и десятки тысяч азотистых оснований! Трудно даже вообразить, какое великое множество генетических фраз, иначе говоря генов, способны они образовать, объединяясь друг с другом в разной последовательности.
Подсчитали также, что, если бы удалось все молекулярные нити ДНК извлечь из клеток человека и развернуть их в одну цепь, она протянулась бы через всю Солнечную систему!
После этих упражнений в арифметике вы теперь, надо полагать, с большим уважением относитесь к четырем буквам генетического алфавита: их выразительные способности действительно безграничны.
Схема ДНК. Она скручена в виде винтовой лестницы
Что же собой представляют четыре всемогущие буквы?
Соединения азота, углерода, водорода и кислорода.
Каждое из оснований в молекуле ДНК соединено с сахаром. Сахар не простой: в нем не шесть, как в обычных сахарах, а только пять атомов углерода. У сахара, который входит в состав ДНК, его называют дезоксирибоза, на один атом кислорода меньше, чем у рибозы — сахара РНК.
Сахара связаны в длинные цепи фосфорной кислотой. Но это не все: две сахарно-фосфорные нити ДНК соединяются в одну спирально закрученную молекулу. Соединяются так, что азотистые основания двух нитей-антиподов, цепляясь попарно друг за друга, образуют как бы перекладины лестницы. Притом аденин всегда соединяется с тимином, а гуанин — с цитозином.
Молекула же РНК остается одинарной.
В этом странном удвоении ДНК заключен большой биологический смысл. Благодаря ему облегчается стереотипное копирование материнской ДНК дочерними при размножении клетки. Когда клетка делится пополам, все ее хромосомы и заключенные в них молекулы ДНК удваиваются. И каждая новая клетка получает полную копию с хромосом и с ДНК родительской клетки.
Но копирование необходимо не только при делении, но и в течение всей жизни клетки для синтеза белков. Ведь ДНК штампует РНК по образу своему и подобию, а РНК сообразно с этим подобием штампует белки из аминокислот.
Копирование происходит так: спираль ДНК раскручивается, связи между перекладинами (азотистыми основаниями) обрываются, и обе составлявшие ее цепочки расходятся, как половинки расстегнутой «молнии» на вороте свитера. Затем половинки начинают воссоздавать своих антиподов, присоединяя к каждому из азотистых оснований нужные вещества. И таким образом, каждая из разошедшихся спаренных нитей ДНК восстанавливает полную копию своего утерянного партнера. В результате число нитей ДНК удваивается, и дочерние клетки получают полный комплект наследственной информации, совершенно подобный материнскому.
Копирование при синтезе происходит так же. Только в этом случае разошедшиеся половинки ДНК восстанавливают рядом с собой не одинарную ДНК, а РНК. И не одну, а тысячи их. Ведь даже самые длинные РНК во много раз короче ДНК, поэтому вдоль одной ДНК синтезируются цепочкой друг за другом сразу много РНК. Скопировав со своей родоначальницы наследственную информацию, они уходят затем из ядра в протоплазму клетки, в рибосомы и там руководят синтезом белков.
После того как все ДНК произведут себе подобных двойников, клетка делится. В ход пускается тот великий микромеханизм, который распределяет наследственные задатки по потомкам. В движение его приводит энергия света, аккумулированная растениями. Значит, все явления наследственности в любом уголке животного и растительного царства не проявили бы себя, не будь в клетках митохондриев и хлорофилловых зерен в зеленых листьях. А стоит ли говорить, что без наследственности не было бы и жизни на Земле!
Читать дальше