Поскольку величина магнитной проницаемости зазора гораздо ниже, чем сердечника, магнитный поток, создаваемый обмоткой возбуждения, встречает в зазоре сильное магнитное сопротивление. По этой причине замыкание потока происходит через магнитный слой носителя данных как среды с большой магнитной проницаемостью.
Если носитель выполнен из пластика, бумаги или картона, то магнитный слой наносится в виде специального лака, который содержит мельчайшие частички ферромагнетика. Эти частички подобны пигментам, используемым для изготовления красок. Довольно часто сверху дополнительно наносится прочный защитный слой, препятствующий быстрому стиранию магнитного слоя (рис. 1.2).
Рис. 1.2. Структура магнитного слоя носителя данных
Наиболее широко в качестве магнитного материала используется оксид железа Fe 2O 3, имеющий гамма-кристаллическую структуру и состоящий из микроскопических частиц. Каждая частица приблизительно в 500 раз тоньше волоса и имеет длину около одного микрона, что делает ее едва различимой даже при наблюдении в самые мощные оптические микроскопы.
Если при изготовлении аудио- и видеокассет в качестве магнитного материала обычно используется оксид хрома, то при выпуске магнитных карт и билетов предпочтение отдается ферритам бария. Этот оксид имеет вид небольших кристаллов с гексагональной структурой. Железо в чистом виде, применяемое при записи на проволоку в специальных случаях, а также иногда для качественной записи звуковой информации, по нашим сведениям, при изготовлении карт не используется.
В момент прохождения магнитного носителя перед записывающей головкой частицы ферромагнетика, находящиеся перед зазором, попадают в магнитное поле. Его напряженность пропорциональна силе тока, проходящего по обмотке возбуждения. Здесь необходимо упомянуть о том, что каждый кристалл магнитного материала состоит из одного или нескольких доменов, представляющих собой элементарные постоянные магниты.
Задать определенную пространственную ориентацию кристаллам можно только в процессе нанесения магнитного слоя и до затвердевания связующего вещества. Предварительное ориентирование на этом этапе улучшает магнитные свойства дорожки. Однако внутри каждого кристалла ориентация доменов, происходящая на молекулярном уровне, может быть изменена. Это делается путем приложения к кристаллу внешнего магнитного поля.
На рис. 1.3 показано, как вектора магнитных моментов доменов постепенно поворачиваются до совпадения их направления с направлением приложенного внешнего магнитного поля. Причем процесс ориентации ускоряется при увеличении напряженности внешнего поля Н .
Процесс ориентации происходит тем быстрее, чем выше магнитная проницаемость материала. Факт совпадения направления векторов магнитных моментов доменов с направлением внешнего поля выражается появлением магнитной индукции в самом материале.
Петлей гистерезиса называется кривая значений индукции В как функции напряженности магнитного поля Н . Форма этой кривой отражает тот факт, что нарастание индукции В происходит с запаздыванием по отношению к увеличению напряженности Н . Причина такого отставания — в наличии энергетических барьеров, которые необходимо преодолевать в процессе намагничивания или размагничивания материала.
Рис. 1.3. Ориентирование доменов по направлению магнитного поля
Кривая, обозначенная на рис. 1.4 пунктиром, называется кривой первоначального намагничивания. Она соответствует процессу намагничивания с начальными условиями В = 0, Н = 0. При таких начальных условиях магнитные моменты доменов ориентированы случайным образом, уравновешивая друг друга, и полный магнитный момент ферромагнетика равен нулю.
Рис. 1.4. Пример типичной петли гистерезиса
При проведении магнитной записи особенно важно то, что индукция В не уменьшается до нуля при снижении величины напряженности внешнего поля Н . В данном случае величина Н уменьшается при удалении магнитного носителя от зазора головки. Получаемая намагниченность, или остаточный магнетизм, выражаются величиной B R , называемой остаточной индукцией. Наличие остаточной индукции свидетельствует о превращении участка магнитного слоя в подобие постоянного магнита.
Читать дальше