Вспомните, информация "Да"-"Нет" заключена только в форме передаваемого сигнала: есть в линии прямоугольный импульс - значит "Да", отсутствует - значит "Нет". Чему же здесь "портиться"? Казалось бы, нечему. Но не спешите с выводами, взгляните лучше на рисунок. Вот такими "израненными" и "потрепанными" выглядят информационные импульсы (и служебные, кстати, тоже) после своего головоломного "путешествия" по линии связи. Впечатляющее зрелище, не правда ли? Это уже далеко не те "красавцы-биты" образцовой прямоугольной формы, которые были на станции отправления. Вот вам и ответ на вопрос, что портится - форма импульса. Почему? Об этом и пойдет речь.
Изменения формы импульсов при прохождении их полиции связи называются искажениями. Как только появилась первая линия связи - телеграфный провод, так сразу перед связистами встала задача - направить все свои силы на борьбу с искажениями, которые есть всегда. Не существует такой линии связи, которая не вносила бы искажений в передачу информации. Правда, чем короче линия, тем эти искажения менее заметны. Но кто же захочет довольствоваться связью только на короткие расстояния? Увы, искажения ограничивают дальность связи и иногда весьма существенно, поскольку на приеме из-за них бывает очень трудно определить, какая информация передавалась. Теперь посмотрим на примере кабельной линии, из-за чего возникают искажения формы импульсов.
Кабельная линия связи - это два провода из десятка, а может, из сотни проводов (в зависимости от типа кабеля), выделенные для данной системы передачи. Тот факт, что провода оказывают току сопротивление, вследствие чего он, добегая до конца линии, сильно ослабевает, мы уже обсуждали в главе "Медные рельсы". Но что же представляет собой импульс тока? Глядя на него, мы отчетливо видим, что ток сначала резко, скачком возрастает, некоторое время остается постоянным, затем также резко, скачком падает до нуля. Но изменение тока в проводе, как известно, приводит к изменению магнитного поля вокруг него. Это поле действует не только в пространстве вокруг провода, оно пронизывает и сам провод. Когда собственное магнитное поле провода меняется, то оно по всем правилам электромагнитной индукции (что для нас не ново) наводит в самом этом проводе ЭДС самоиндукции. Еще из школы мы знаем, что ЭДС самоиндукции всегда мешает любому изменению тока в цепи. Если ток в цепи, составленной в нашем случае из двух проводов (один - прямой, другой - обратный), увеличивается, то ЭДС самоиндукции всегда этому мешает и ток в цепи возрастает не так резко. Если ток в цепи уменьшается, то она мешает этому уменьшению, поддерживает ток, как верного друга в беде, и в итоге он падает более плавно.
Значение наводимой в проводе ЭДС зависит от скорости изменения тока. Чем больше эта скорость, тем большая наведется ЭДС. Особенно сильно она возрастает при резком изменении тока, таком как, скажем, в импульсе. В проводах разной марки при одной и той же скорости изменения тока может наводиться разная по значению ЭДС самоиндукции. Говорят, что эти провода обладают разным коэффициентом самоиндукции, или, короче, коэффициентом индуктивности, или просто индуктивностью. Обозначается она буквой L . Единица индуктивности названа генри в честь американского ученого Джозефа Генри (1797-1878).
Итак, провода кабеля обладают сопротивлением и индуктивностью. Если еще учесть, что изоляция между проводами не является идеальной (она все же чуть-чуть проводит ток), и отразить данный факт на рисунке включением между ними проводимости G , то получится электрическая схема линии связи. Из этого же рисунка вы видите, как линия искажает форму импульса: она "растягивает" его во времени.
Надо сказать, что приведенная электрическая схема является неполной. Вспомним такой факт из курса физики: если расположить одну над другой две металлические пластины и на короткое время подключить их к батарее, то на пластинах накопится какое-то количество зарядов. Такой накопитель зарядов называют конденсатором. Количество накапливаемых зарядов определяется его емкостью С . Единица емкости - фарада - названа так в честь знакомого нам по предыдущим главам физика Майкла Фарадея.
Конденсаторы различаются формой пластин и веществом (изолятором), которое находится между ними. Два провода в кабеле связи, разделенные изоляцией, также образуют конденсатор. В разных типах кабелей емкость между парами проводов различна. Таким образом, более точная электрическая модель линии связи кроме сопротивления, индуктивности и проводимости содержит еще и емкость, подключенную к проводам параллельно проводимости.
Читать дальше