Для превращения непрерывного электрического тока в двоичные импульсы необходимо на выходе передающей телевизионной трубки поставить АЦП. Чтобы перевести в двоичный код яркость каждого элемента изображения, отсчетные значения тока следует брать не реже чем через 80 нс. Использование АЦП с 8-разрядным кодом позволит сохранить в изображении 256 градаций яркости.
Перед приемной телевизионной трубкой — кинескопом — следует поставить ЦАП, чтобы из двоичного кода получить вновь непрерывный ток. От его силы зависит число электронов в электронном луче и, следовательно, число квантов света, выбитых лучом из люминофора — специального состава, покрывающего экран с внутренней стороны трубки. Луч в кинескопе прочерчивает строки на экране с такой же скоростью, как и передающий электронный луч, и "засвечивает" различные участки экрана пропорционально значениям тока в те или иные моменты времени, а следовательно, пропорционально освещенности передаваемых элементов изображения. Очевидно, что оба луча — и передающий, и приемный — должны начинать движение с одного и того же элемента изображения. Чтобы поддерживать одинаковые скорости перемещения лучей и начинать их перемещение с одного и того же элемента изображения, из передающей телевизионной трубки в приемную посылаются специальные управляющие импульсы, называемые импульсами синхронизации.
Читатели, вероятно, обратили внимание на то, что и передача подвижного изображения, и запись его в электронную память требуют очень больших информационных затрат. В самом деле, нетрудно подсчитать, что в течение одной секунды у непрерывной электрической копии изображения необходимо взять 12,5 млн отсчетных значений. Следовательно, при кодировании каждого из них восемью битами общее число бит, описывающее всего один миг из нашей жизни — секунду, составит 100 млн. Сравните эти информационные затраты с теми, которые требуются для передачи или "консервации" текста, речи или музыки, фотографий, и вы увидите, что на превращение в двоичные цифры 0 и 1 пятиминутного видеорепортажа о футбольном матче нужно столько же бит, сколько для кодирования 3000 книг, или 100 часов непрерывного разговора, или 4000 фотографий преступников. Так что, если мы пожелаем сохранить в электронной памяти весь репортаж о футбольном матче (2 тайма по 45 мин каждый), нас не сможет выручить та микросхема фирмы "Intel corporation", о которой уже не раз упоминалось. Значит, свидание с блистательными "звездами" футбола не состоится?
Революцией в области хранения информации стало изобретение видеодисков размером с грампластинку, сделанных из прочного и легкого алюминия и покрытых пластиком. Двоичная информация записывалась на блестящую поверхность диска в виде микроскопических углублений по всей длине спиральной дорожки и затем считывалась с помощью лазерного луча, проходящего по поверхности диска с очень большой скоростью. Каждая сторона видеодиска могла содержать до 54000 цветных изображений. Так, Национальная художественная галерея в Вашингтоне записала на одном видеодиске изображения 1 645 картин и скульптур. Каждая картина имеет кодовый номер, внесенный в видеодисковый каталог. При наборе этого номера на клавиатуре компьютера считывающее устройство отыскивает нужную картину и проецирует ее на экране. Сейчас такие видеодиски (они меньше размером и известны под названием компакт-диски) используются и для записи в цифровом виде подвижных изображений. Стало быть, "звезды" кожаного мяча могут в любое время прийти в наш дом.
Но мы еще ничего не говорили о цвете. Как с помощью всего двух цифр — 0 и 1 — передать тончайшую палитру красок, скажем, бессмертного произведения Леонардо да Винчи, с которого начался наш рассказ?
Кто из нас в детстве не экспериментировал с акварельными красками и не пытался создать различные цветовые оттенки. Оказывается, любой цвет радуги можно получить, смешивая в определенной пропорции краски только трех цветов — красного, зеленого и синего, которые потому называют основными.
Впервые эта мысль была высказана в речи "Слово о происхождении света, новую теорию о цветах представляющее, в публичном собрании Императорской Академии Наук июля 1 дня 1756 года говоренное Михаилом Ломоносовым", в которой великий русский ученый утверждал о существовании трех родов особой материи — эфира: от первого из них происходит красный цвет, от второго — желтый, от третьего — голубой, а все прочие цвета получаются смешением этих трех. Кстати, нелишне будет заметить, что в современной полиграфии для печатания цветных изображений используются именно данные цвета.
Читать дальше