«А»:Тогда упор придется сделать на КМОП-логику?
«С»:Безусловно, там где это только возможно, будем применять именно КМОП структуры, поскольку они отличаются особо малым потреблением тока. Но, учитывая специфику приемников с преобразованием «вверх», легко представить, что эти структуры мы не сможем применять везде!
«А»:Дело в их недостаточном быстродействии?
«С»:Да! Представим себе, что мы принимаем, например, станцию, сигнал которой расположен в 10-метровом диапазоне. Наша первая промежуточная частота — 55,5 МГц. Это означает, что с гетеродина на вход ЦОУ поступает… 85,5 МГц! Этот сигнал следует сперва превратить в последовательность прямоугольных импульсов, а затем разделить на 1000.
«Н»:А почему именно на 1000?
«С»:Да хотя бы потому, что частоту принимаемого сигнала мы должны индицировать с точностью не 1 Гц, а 1 кГц! Следовательно, на вход ЦОУ должна поступать частота 85,5 кГц! С такой частотой КМОП-логика справится шутя!
«Н»:А на что вообще способна КМОП в смысле частоты?
«А»:Прекрасные, проверенные временем, серии К176 и К561 отлично справляются с частотами до 2 МГц. Сохраняя при этом хорошую крутизну фронтов и малый ток потребления.
«Н»:А разве ток потребления зависит от частоты?
«А»:Обязательно… Но я еще не пришел к окончательному выводу относительно того, на основе каких микросхем будет построен предварительный делитель частоты. Ведь обычные ТТЛ здесь не помогут. Не так ли, Спец?
«С»:Безусловно так! Не помогут нам и экономичные ТТЛШ серии 555. Ничего хорошего не принесет и применение ТТЛШ серии 531. Она «недотягивает» по частоте, помимо всего прочего.
«А»:Ну, а как насчет ЭСЛ? Например, серии 500?
«С»:Они потребляют ток около 150–200 мА на корпус! Например, К500ИЕ137 (делитель на 10), имея максимальную частоту счета 125 МГц, потребляет ток равный 165 мА! И при этом полярность напряжения питания — отрицательная! В то время, как у КМОП — положительная! Следовательно, применение серии 500 нежелательно крайне!
«А»:Имеются новые ТТЛШ серии КР1531, которые вполне способны работать на частотах до 100 МГц. При этом их ток потребления не превышает 45 мА на счетчик!
«С»:Да, именно на этой серии мы и остановились бы… если бы не существовало ЗНАЧИТЕЛЬНО лучшего решения!
«А»:Но я не знаю более подходящей серии!..
«С»:Это серия 193, сравнительно недавно рассекреченная. И в ней имеется микросхема, которая проходит в нашем случае «по всем статьям»! Можно сказать, оптимальная микросхема!
«А»:Как она называется?
«С»:Это K193HE3. Представляет из себя счетчик, коэффициент деления частоты которого (в зависимости от коммутации управляющих входов) может быть выбран равным 10 или 11. Потребление тока не более 20 мА! Частота входных сигналов от 30 до 200 МГц! И при этом на ее счетный вход можно подавать синусоидальный сигнал!
«А»:Потрясающе!..
«С»:Особенно то, что эта схема начинает работать не с нулевой частоты, а с 30 МГц. Тем самым отсекается низкочастотная помеха. Кстати, можем сразу же занести параметры и цоколевку микросхемы K193ME3 в наш справочник.
«Н»:Значит, вопрос с первым делением входной частоты на 10 считаем решенным?
«А»:Ну конечно! Теперь наш сигнал (переведенный в форму прямоугольных импульсов) имеет частоту уже не 85 МГц, а «всего» 8,5 МГц! С такой частотой справятся и ТТЛ, и ТТЛШ — спокойно!
«С»:В качестве второго делителя, действительно можно применить многие типы микросхем. Лично я предпочел бы для этого старую «дубовую» (это на сленге электронщиков — синоним надежности) серию ТТЛ. А именно — К133ИЕ2.
«Н»:Но поскольку, как я понял, подавляющее число микросхем в нашем ЦОУ будет именно КМОП, то почему бы не побеседовать об этом более обстоятельно?
«С»:Предложение принято!.. Итак, прежде всего, запомним, — что аббревиатура КМОП расшифровывается как: комплементарная металл — окисел — полупроводниковая логика. Слово «комплементарный» переводится как «взаимно дополняющий». Так именуют пару транзисторов, сходных по абсолютным значениям параметров, но имеющих различные типы проводимостей. В биполярной технике — это транзисторы р-n-р и n-р-n . А в полевой — транзисторы с р - и n -каналом.
«А»:Следует ли из этого тот вывод, что в последнем случае речь идет об ИНДУЦИРОВАННЫХ каналах?
Читать дальше