Трансформатор намотан на ферритовом кольце с характеристиками, указанными на схеме. Обмотки наматываются медным обмоточным проводом ПЭВ-2 парами совместно, причем обратите внимание, что у входной пары обмоток соединен конец одной с началом другой, а у выходной — начала обеих обмоток. Подбором дополнительного резистора 2 кОм (на схеме помечен звездочкой и соединен пунктиром) выходное напряжение устанавливается более точно. Дроссель по питанию +9 В (390 мкГн) служит для защиты внешних сетей от помех (см. главу 5 ). Учтите, что схема довольно заметно «фонит» в радиодиапазоне, потому ее надо заключать в металлический экран, который должен быть соединен с входной (обозначенной на схеме, как «Общ. Вх») «землей» в одной точке, вблизи входного контакта на плате.
Для того чтобы поменять выходное напряжение, следует, во-первых, изменить коэффициент резистивного делителя в базе ключа на КТ605АМ. При этом, конечно, надо снижать номинал верхнего по схеме резистора (680 кОм), а не повышать — нижнего (15 кОм). Например, при выходном напряжении ±24 В номинал верхнего резистора должен составлять примерно 75–82 кОм. Но для хорошей работы преобразователя этого изменения недостаточно — для получения максимального КПД необходимо также изменить число витков во вторичных обмотках. Рассчитывать их следует гак: желаемое выходное напряжение нужно умножить на коэффициент 1,3, затем полученную величину поделить на 9 (входное напряжение) и умножить на 10 (число витков в первичной обмотке). Например, при выходном напряжении, равном ±24 В, число витков в каждой из вторичных обмоток должно быть равно 35 (при этом и вторичную, и первичную обмотки можно намотать более толстым проводом). При пониженном выходном напряжении можно упростить схему, отказавшись от умножителя напряжения (убрав последовательно включенные конденсаторы, подключив диоды по схеме рис. 4.4 и увеличив соответственно число витков вторичной обмотки), при этом КПД повысится.
Подробности
Зачем в схеме обсуждаемого преобразователя вообще умножитель напряжения? Если вы проанализируете процессы, происходящие в трансформаторе, то обнаружите, что действующее значение напряжения на первичной обмотке равно напряжению питания — т. е. 9 В. Итого, чтобы получить после выпрямления и фильтрации значение напряжения 165 В, нам понадобилось бы как минимум 10-165/9 ~ 180 витков в каждой вторичной обмотке, а с запасом на потери и регулирование примерно на 20–30 % больше, т. е. около 240. Такое число витков (в сумме около 500) намотать на кольце диаметром 20 мм физически сложно. А когда мы снижаем требования к напряжению, число витков уменьшается и умножитель, который отрицательно сказывается на КПД устройства, можно убрать.
Главным недостатком данной схемы с точки зрения КПД, однако, является не умножитель, а форма сигнала на первичных обмотках. Так как включение одного ключа и выключение другого совпадают во времени, существует момент, когда через обе обмотки течет сквозной ток. Это очень плохо сказывается на КПД устройства и ведет к излишним потерям на нагрев транзисторов. Для небольших мощностей, как здесь, этим эффектом можно пренебречь, но Для больших его приходится учитывать и разносить моменты включения одного ключа и выключения другого во времени. Это делается обычно с помощью специализированных микросхем для управления ключами, хотя их несложно сымитировать на любом микроконтроллере.
Как правильно питаться
Общая схема грамотной разводки питания между источниками и потребителями в электронных устройствах приведена на рис. 4.8, а . На практике, если источник расположен в отдельном корпусе, то указанной на блок-схеме общей точкой соединения «земли» служит выходная клемма «минус» этого корпуса. Если же вся конструкция — и источники и нагрузки — представляет собой набор плат в едином корпусе, то за общую точку удобно выбрать, скажем, минусовой вывод основного фильтрующего конденсатора.
Рис. 4.8. Схемы разводки питания между источниками и потребителями
Смысл такой разводки заключается в том, чтобы токи от разных потребителей не протекали по одному и тому же проводу, поскольку это может вызвать их взаимное влияние и другие нежелательные явления. Характерный эффект под названием «захват частоты» можно наблюдать, если на двух разных, но с общим питанием, платах имеются генераторы (не кварцевые), работающие на близких или кратных частотах — вдруг по непонятным причинам они начинают работать на одной и той же частоте! Иногда от этого очень трудно избавиться, поэтому лучше сразу делать все правильно. Если же по каким-то причинам идеала по образцу рис. 4.8 достичь не получается (как в подавляющем большинстве практических случаев), то для нагрузки как можно ближе к выводу питания устанавливают т. н. «развязывающие» конденсаторы (они показаны на рис. 4.8). Причем если это отдельная плата, то конденсаторы ставят на ней, прямо около входного разъема, ни в коем случае не в дальнем конце платы! Кроме того, во всех случаях провода и проводники питания на плате должны быть как можно толще — если провод тонкий, то на нем самом за счет протекающего тока происходит падение напряжения, и разные потребители оказываются под разными потенциалами как по «земле», так и по питанию.
Читать дальше
Конец ознакомительного отрывка
Купить книгу