Юрий Ревич - Занимательная микроэлектроника

Здесь есть возможность читать онлайн «Юрий Ревич - Занимательная микроэлектроника» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная микроэлектроника: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная микроэлектроника»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная микроэлектроника», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь давайте определимся, что именно мы будем записывать, и на сколько нам хватит этой памяти. Базовый кадр данных у нас будет состоять из четырех байтов значений давления и температуры. Мы можем, конечно, писать и в распакованном BCD-виде, взяв подготовленные для индикации значения, но зачем загромождать память (кадр тогда состоял бы из 6 байтов, не четырех), если коэффициенты пересчета мы знаем (они у нас хранятся в EEPROM), и пересчитать всегда сможем. Если договориться на четырех байтах, то в наши 32 кбайта мы сможем вместить 8192 измерения (на самом деле чуть меньше, как мы увидим, но это несущественно), то есть при трехчасовом цикле (8 измерений в сутки) памяти нам хватит на 1024 суток, или почти на 3 года записей!

Как видите, даже такой объем вполне приемлемый. Если хотите увеличить еще в два раза — возьмите память АТ24С512, ее можно поставить сюда без изменений в схеме (и в программе, кроме задания максимального адреса). Схемотехника серии АТ24 предполагает возможность установки параллельно четырех или восьми таких микросхем (с заданием индивидуального I 2С-адреса для каждой), так что при желании объем можно увеличить еще в четыре-восемь раз. Причем использовать, например, две АТ24С512 целесообразнее, чем одну АТС1024, так как для последней адресация усложняется (адрес для объема 128 кбайт содержит 17 бит и выходит за рамки 2-байтового).

Подробности

Микросхемы серии АТ24 имеют два (или три для микросхем с буквой В в конце обозначения, например, АТ24С256В) специальных вывода А0 и А1 (выводы 1 и 2 для 8-выводных корпусов), которые задают индивидуальный I 2С-адрес. Если эти выводы ни к чему не подсоединять (как в нашей схеме), то считается, что они подсоединены к логическому нулю. Тогда I 2С-адрес микросхемы при записи будет 10100000 в двоичной форме или $А0 в шестнадцатеричной (см. листинг процедур I 2С в Приложении 5 ). Если на указанные выводы адреса подавать сигналы, то старшие 7 бит адреса такой микросхемы будут определяться формулой 10100А1А0. Таким образом, переходом от одной микросхемы к другой можно управлять, если подавать на эти выводы сигнал по дополнительным линиям, которые фактически будут 17-м и 18-м битами адреса.

Для того чтобы записывать исходные значения температуры и давления, нам их придется где-то хранить отдельно, отведя для этого специальные ячейки в SRAM. Сама запись производится очень просто: с каждым байтом мы увеличиваем на единицу содержимое счетчика адресов AddrH: AddrL(командой adiw— именно для этого и выбирались регистры r24и r25, чтобы ее можно было использовать), «забиваем» нужный байт в регистр DATA, и вызываем процедуру WriteFlash.

Но тут встает две проблемы. Прежде всего, нужно решить, что делать, когда память закончится. Тогда следует либо обнулять ячейки и начинать запись заново, поверх младших адресов, либо, что гораздо красивее, остановить запись, пока содержимое ее не будет прочитано и адрес принудительно не будет обнулен. Поэтому потребуется какой-то флаг, сигнализирующий о том, что настал конец памяти. Причем отвести для этого флага, например, бит в регистре Flag, будет недостаточно: а что будет при сбое питания? Нам придется хранить где-то во встроенной EEPROM и этот флаг и, главное, текущий адрес памяти, иначе данные будут пропадать после каждого отключения питания. А для прибора, который может писать три года подряд, это «несолидно».

А как отсчитывать время, когда производить запись? Для того чтобы метеоданные были полноценными, их нужно привязать ко времени. И тут мы неизбежно приходим к тому, чтобы объединить часы с нашим измерителем. Этим мы займемся чуть далее, потому что использовать сам контроллер в качестве часов, как мы это делали в главе 14 , здесь нецелесообразно, слишком много он всего делает такого, что может вызвать сбой в отсчете времени. Придется задействовать внешние часы, но подключение RTC заметно сложнее, чем памяти, потому мы рассмотрим этот вопрос позднее.

А пока, чтобы отработать процедуры обмена по I 2С, договоримся, что запись в память у нас будет производиться по прерыванию Timer 1, который больше все равно в измерителе ничем не занят. При 4 МГц тактовой частоты и максимально возможном коэффициенте ее деления 1024, можно заставить Timer 1 срабатывать каждые, например, 15 с, для чего в регистр сравнения придется записать число 58 594 (проверьте!). С такой частотой память, конечно, заполнится очень быстро (32 кбайта — менее чем за 1,5 суток), но это, наоборот, удобно, если стоит задача проверить все наши процедуры.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная микроэлектроника»

Представляем Вашему вниманию похожие книги на «Занимательная микроэлектроника» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная микроэлектроника»

Обсуждение, отзывы о книге «Занимательная микроэлектроника» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x