Теперь давайте определимся, что именно мы будем записывать, и на сколько нам хватит этой памяти. Базовый кадр данных у нас будет состоять из четырех байтов значений давления и температуры. Мы можем, конечно, писать и в распакованном BCD-виде, взяв подготовленные для индикации значения, но зачем загромождать память (кадр тогда состоял бы из 6 байтов, не четырех), если коэффициенты пересчета мы знаем (они у нас хранятся в EEPROM), и пересчитать всегда сможем. Если договориться на четырех байтах, то в наши 32 кбайта мы сможем вместить 8192 измерения (на самом деле чуть меньше, как мы увидим, но это несущественно), то есть при трехчасовом цикле (8 измерений в сутки) памяти нам хватит на 1024 суток, или почти на 3 года записей!
Как видите, даже такой объем вполне приемлемый. Если хотите увеличить еще в два раза — возьмите память АТ24С512, ее можно поставить сюда без изменений в схеме (и в программе, кроме задания максимального адреса). Схемотехника серии АТ24 предполагает возможность установки параллельно четырех или восьми таких микросхем (с заданием индивидуального I 2С-адреса для каждой), так что при желании объем можно увеличить еще в четыре-восемь раз. Причем использовать, например, две АТ24С512 целесообразнее, чем одну АТС1024, так как для последней адресация усложняется (адрес для объема 128 кбайт содержит 17 бит и выходит за рамки 2-байтового).
Подробности
Микросхемы серии АТ24 имеют два (или три для микросхем с буквой В в конце обозначения, например, АТ24С256В) специальных вывода А0 и А1 (выводы 1 и 2 для 8-выводных корпусов), которые задают индивидуальный I 2С-адрес. Если эти выводы ни к чему не подсоединять (как в нашей схеме), то считается, что они подсоединены к логическому нулю. Тогда I 2С-адрес микросхемы при записи будет 10100000 в двоичной форме или $А0 в шестнадцатеричной (см. листинг процедур I 2С в Приложении 5 ). Если на указанные выводы адреса подавать сигналы, то старшие 7 бит адреса такой микросхемы будут определяться формулой 10100А1А0. Таким образом, переходом от одной микросхемы к другой можно управлять, если подавать на эти выводы сигнал по дополнительным линиям, которые фактически будут 17-м и 18-м битами адреса.
Для того чтобы записывать исходные значения температуры и давления, нам их придется где-то хранить отдельно, отведя для этого специальные ячейки в SRAM. Сама запись производится очень просто: с каждым байтом мы увеличиваем на единицу содержимое счетчика адресов AddrH: AddrL(командой adiw— именно для этого и выбирались регистры r24и r25, чтобы ее можно было использовать), «забиваем» нужный байт в регистр DATA, и вызываем процедуру WriteFlash.
Но тут встает две проблемы. Прежде всего, нужно решить, что делать, когда память закончится. Тогда следует либо обнулять ячейки и начинать запись заново, поверх младших адресов, либо, что гораздо красивее, остановить запись, пока содержимое ее не будет прочитано и адрес принудительно не будет обнулен. Поэтому потребуется какой-то флаг, сигнализирующий о том, что настал конец памяти. Причем отвести для этого флага, например, бит в регистре Flag, будет недостаточно: а что будет при сбое питания? Нам придется хранить где-то во встроенной EEPROM и этот флаг и, главное, текущий адрес памяти, иначе данные будут пропадать после каждого отключения питания. А для прибора, который может писать три года подряд, это «несолидно».
А как отсчитывать время, когда производить запись? Для того чтобы метеоданные были полноценными, их нужно привязать ко времени. И тут мы неизбежно приходим к тому, чтобы объединить часы с нашим измерителем. Этим мы займемся чуть далее, потому что использовать сам контроллер в качестве часов, как мы это делали в главе 14 , здесь нецелесообразно, слишком много он всего делает такого, что может вызвать сбой в отсчете времени. Придется задействовать внешние часы, но подключение RTC заметно сложнее, чем памяти, потому мы рассмотрим этот вопрос позднее.
А пока, чтобы отработать процедуры обмена по I 2С, договоримся, что запись в память у нас будет производиться по прерыванию Timer 1, который больше все равно в измерителе ничем не занят. При 4 МГц тактовой частоты и максимально возможном коэффициенте ее деления 1024, можно заставить Timer 1 срабатывать каждые, например, 15 с, для чего в регистр сравнения придется записать число 58 594 (проверьте!). С такой частотой память, конечно, заполнится очень быстро (32 кбайта — менее чем за 1,5 суток), но это, наоборот, удобно, если стоит задача проверить все наши процедуры.
Читать дальше
Конец ознакомительного отрывка
Купить книгу