Юрий Ревич - Занимательная микроэлектроника

Здесь есть возможность читать онлайн «Юрий Ревич - Занимательная микроэлектроника» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная микроэлектроника: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная микроэлектроника»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная микроэлектроника», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На самом деле нам такая точность не требуется — все равно термометр, подвешенный за окном или на стенке комнаты, никогда не покажет точную температуру, насколько бы он ни был точным сам по себе. На него будут влиять сквозняки, солнечные лучи, осветительные приборы, конвекция воздуха по нагретой стенке, тепловое излучение от оконных проемов — одним словом, все то, что определяет т. н. методическую погрешность. И для большинства бытовых измерений абсолютной точности в 8 разрядов (~0,4 %) хватает, как говорится, «выше крыши». Это относится не только к температуре, но и к подавляющему большинству других бытовых измерений. В большинстве случаев нам важно обеспечить не абсолютную точность, а, во-первых, стабильность показаний (чтобы в одинаковых условиях прибор показывал Одно и то же, и показания можно было бы сравнивать между собой), и, во-вторых, достаточную разрешающую способность, т. е. оптимальную цену деления прибора.

Заметки на полях

Необходимость последнего параметра можно проиллюстрировать на примере наручных часов — практически все они содержат секундную стрелку (или демонстрируют секунды на дисплее), хотя секундомер в жизни требуется не часто, да и уход таких часов от истинного времени (т. е. их абсолютная точность) может составлять минуты, что нас совсем не «напрягает». Просто без секундной стрелки нам как-то неуютно. Точно так же при измерении температуры следует демонстрировать десятые градуса, хотя термометр, повешенный, например, на высоте четвертого этажа, может показать на пару-другую градусов больше, чем термометр на уровне земли. Впрочем, излишняя разрешающая способность тоже ни к чему — если мы бы захотели демонстрировать ту же температуру с сотыми градуса, то они бы попросту мелькали на дисплее, не неся никакой информации.

После такого экскурса в теорию измерений мы можем сделать вывод, что погрешности встроенного АЦП нам в большинстве случаев хватит и без особых ухищрений, важно только, чтобы показания не «дребезжали». Цифровые помехи со стороны ядра МК, как показывает опыт, имеют значительно меньшее влияние на результат, чем внешние, потому режим Noise Reduction нам не потребуется. Уменьшение дребезга почти до нуля достигается тем, что, во-первых, на входе канала ставится фильтр низкой частоты для устранения неизбежных в совмещенных аналого-цифровых схемах наводок на внешние цепи. Обычно достаточно керамического конденсатора порядка 0,1–1 мкФ, хотя в критичных случаях фирменное руководство рекомендует еще последовательно с ним включать индуктивность (порядка 10 мкГн), которую, добавим, для простоты можно заменить на резистор (несколько единиц или десятков килоом). Во-вторых, мы будем измерять несколько раз, и значения отдельных измерений усреднять — это самый эффективный способ повышения стабильности показаний, который я рекомендую для всех случаев, даже и тогда, когда соблюдены все фирменные рекомендации по повышению точности измерений (и в этом случае — особенно!). Это хоть и загромождает программу, но полученный эффект оправдывает такое усложнение.

Наконец, остановимся на источнике опорного напряжения, который, как мы знаем из главы 10 , влияет на точность АЦП напрямую. Встроенные АЦП в МК AVR могут использовать три источника опорного напряжения на выбор: внешний, встроенный и напряжение питания аналоговой части (оно всегда в таких случаях отдельное от питания цифровой, хотя в простейших случаях это может быть один и тот же источник).

Встроенным источником опорного напряжения 2,56 В я пользоваться не рекомендую, прежде всего потому, что его величина может «гулять» в значительных пределах (до ±0,3 В), и зависит к тому же от напряжения питания, что в достаточной степени обессмысливает его использование. Единственным аргументом «за» является сама величина 2,56 В, что позволяет без сложных арифметических преобразований получать на выходе число измеряемых милливольт. Выходное значение АЦП (для несимметричного входа) выражается формулой:

N= 1024∙( U вх/ U on).

Поэтому при U on= 256 мВ, выходная величина N будет представлять учетверенное значение входного напряжения в милливольтах. Его легко привести к целому числу милливольт, просто сдвинув результат на два разряда вправо.

Однако такое измерение будет достаточно неточным и с искусственно пониженным разрешением (мы «легким движением руки» зачем-то превращаем 10-разрядный АЦП в 8-разрядный). Поэтому во всех случаях, когда требуется обеспечить абсолютную точность (например, при работе АЦП в составе мультиметра, где нас интересуют именно абсолютные значения в вольтах), следует использовать внешний точный источник опорного напряжения, тем более что они вполне доступны, хотя и не всегда дешевы (так, один из самых дорогих — прецизионный МАХ873 с напряжением 2,5 В имеет разброс напряжения 1,5–3 мВ при температурной стабильности 2,5–7 мВ во всем диапазоне температур, и стоит порядка 10 долл.). Важным преимуществом такого способа служит возможность выбора опорного напряжения из более удобных величин (например, 2,048 В), что позволит не терять разрешение встроенного АЦП.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная микроэлектроника»

Представляем Вашему вниманию похожие книги на «Занимательная микроэлектроника» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная микроэлектроника»

Обсуждение, отзывы о книге «Занимательная микроэлектроника» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x