Теперь общая схема. Выбираем индикаторы большого размера (высота цифр — 1" или 25,4 мм), с общим анодом, т. е. типа SA10, если брать продукцию Kingbright. Лично я предпочитаю желтого свечения (например, SC10-21Y), но это не имеет значения. Так как падение напряжения у них может достигать 4 В, то от того же источника, что требует МК (5 В), питать их нельзя.
Следовательно нам потребуется два напряжения питания: стабилизированное +5 В и нестабилизированное (пусть будет +12 В). Управлять разрядами индикаторов мы будем от транзисторных ключей с преобразованием уровня (когда на выходе МК уровень +5 В, ключ подает +12 В на анод индикатора), а сегменты от простых транзисторных ключей — при уровне +5 В вывод сегмента коммутируется на «землю» (так как питание индикаторов повышенное, то, к сожалению, управлять прямо от выводов процессора не получится). В обоих случаях управление получается в положительной логике: включенному индикатору и сегменту соответствует логическая единица (что совершенно не принципиально, но удобно для простоты понимания работы схемы). Резисторы в управлении сегментами примем равными 470 Ом, тогда пиковый ток через сегмент составит примерно 20 мА, а средний — 5 мА (при динамическом управлении 4-мя разрядами). Всех «восьмерок» у нас быть не может, максимальное число одновременно горящих разрядов равно 24 («20:08»), потому общее максимальное потребление схемы составит 24 х 5 = 120 мА, плюс -10 мА схема управления, итого 130 мА.
Теперь обязательно подумаем о том, чтобы часы продолжали идти при сбоях в электрической сети. Нет ничего ужасней бытового прибора, который не может сохранить установки даже при секундном пропадании напряжения питания, вероятно, вы не раз с такими мучились. Конструкторов, делающих музыкальные центры, магнитофоны, микроволновые печи и электроплиты, в которых часы при малейшем сбое в подаче электроэнергии приходится устанавливать заново, следует расстреливать без суда и следствия.
Режим энергосбережения с глубоким «засыпанием» МК не подходит, поскольку тогда все «замирает» и его применение обессмысливается, ведь нам нужно, чтобы часы не просто сохраняли значение времени, а продолжали идти и при отключении от сети. При питании в пределах 4–5 В МК типа 2313 потребляет около 5 мА, так что можно рассчитывать на непрерывную работу от щелочной («алкалайновой») батарейки типа АА с емкостью порядка 2 Ач в течение не менее 2–3 недель. Для обеспечения работы понадобятся три таких элемента, соединенных последовательно, тогда их общее напряжение составит 4,5 В.
Заметки на полях
В устройствах на специализированных микросхемах RTC можно использовать режимы энергосбережения МК, и дело обстоит значительно лучше: часы идут отдельно до тех пор, пока есть хоть какое-то питание (типичное минимально допустимое значение для RTC — 2 В). В результате при грамотном проектировании можно обеспечить время работы от батарейки в сотни раз большее, чем у нас. Но мы все же пока ограничимся простейшим вариантом — настольные часы и не предназначены для работы в автономном режиме, а для того, чтобы перенести их из комнаты в комнату или «пережить» отключение электричества на пару часов, возможностей нашей системы вполне хватит.
Для обеспечения такого режима нам понадобится монитор питания — схема, которая отслеживает наличие входного напряжения, и переключатель с сетевого питания на батарейки. Чтобы сделать схему совсем «юзабельной», добавим также небольшой узел для сигнализации о необходимости замены резервной батарейки — пусть это будет наше ноу-хау, т. к. в подобных сетевых приборах такого почти ни у кого нет. Хотя есть специальные микросхемы, которые «мониторят» питание, и мы будем их в дальнейшем использовать, здесь в целях максимального упрощения схемы мы без них обойдемся. Схему такого узла удобно реализовать, «не отходя от процессора», на встроенном компараторе. Но тогда нужно задействовать аж 18 выводов (12 под индикацию, 2 кнопки, 2 входа компаратора, 1 для его выхода и еще 1 для монитора питания), а ставить процессор большего размера только для этой цели не хочется. И еще больше не хочется добавлять какие-то внешние схемы — все только потому, что мы захотели контролировать батарейку, которая, может быть, сядет этак лет через пять?
Поэтому мы поступим так: задействуем один из входов компаратора также и под вторую кнопку, как обычный вывод порта. А на второй вход компаратора «повесим» дополнительно функцию монитора— сигнализировать о пропадании внешнего питания. Остается придумать, как обеспечить сигнализацию разряда батареи — тут мы сделаем просто: пусть разделительный символ (двоеточие) мигает, когда все нормально, а когда батарея разряжена — горит все время. Таким образом мы получим наиболее экономичную схему с минимумом внешних элементов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу