Юрий Ревич - Занимательная микроэлектроника

Здесь есть возможность читать онлайн «Юрий Ревич - Занимательная микроэлектроника» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2007, ISBN: 2007, Издательство: БХВ-Петербург, Жанр: sci_radio, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Занимательная микроэлектроника: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Занимательная микроэлектроника»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга на практических примерах рассказывает о том как проектировать, отлаживать и изготавливать современные электронные устройства в домашних условиях. Теоретические основы, физические принципы работы электронных схем и различных типов радиоэлектронных компонентов иллюстрируются практическими примерами в виде законченных радиолюбительских конструкций и дополняются советами по технологии изготовления любительской аппаратуры. На доступном уровне излагаются теоретические основы цифровой техники — математическая логика и различные системы счисления. Вторая часть книги полностью посвящена программированию микроконтроллеров, как основы современной электроники. Особое внимание уделяется обмену данными микроэлектронных устройств с персональным компьютером, приводятся примеры программ на Delphi.
Для широкого круга радиолюбителей

Занимательная микроэлектроника — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Занимательная микроэлектроника», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для обеих микросхем опорное и входное напряжения не должны выходить за пределы, на 1 В отступающие от потенциалов + U пити — U пит. Для микросхемы ПВ2, вообще говоря, требуется двуполярное питание, т. к. «цифровая земля» в GNDц должна иметь общую точку с аналоговой частью для внутреннего согласования уровней управляющих сигналов. Однако можно обойтись одним питанием +5 В (подсоединив вход — U питк «земле»), если опорное и измеряемое напряжения находятся в пределах от 1 до 4 В.

Есть и более современные варианты этих разработок, например, с очень малым потреблением, но параметры описанных микросхем и так достаточно хороши: при тактовой частоте 50 кГц время преобразования составляет 0,32 с (16000 периодов тактовой частоты), а потребление при этом не превышает 0,6 мА (не считая, конечно, потребления индикаторов в LED-варианте).

Удобство микросхем ПВ2 и ПВ5 заключается и в том, что они оперируют с двуполярными входными напряжениями, автоматически определяя и высвечивая знак. На схеме рис. 10.7 показан вариант с общими «землями». Диапазон входного измеряемого напряжения определяется опорным, с помощью которого и задается масштаб, при этом опорное должно находиться в пределах 0,1–1 В, а измеряемое может по абсолютной величине превышать его, в соответствии с разрешающей способностью, ровно в два раза. Если, например, опорное напряжение равно 1 В, то измеряемое может быть в пределах ±2 В (точнее ±1,999 В), а в общем случае выходной код определяется выражением N= 1000∙( U вх/ U on). Если значение входного напряжения превышает предел +2 U on, младшие три разряда гаснут, а если снижается ниже -2 U on— гаснет все, кроме знака «минус».

Подробности

Оба входных напряжения— опорное и измеряемое— могут быть «плавающими», без общей «земли», единственное требование, чтобы их значения не выходили за пределы питания (а по абсолютной величине они, естественно, должны соответствовать указанным ранее требованиям). В этом случае вывод 32 («аналоговая земля») не используется. На этом выводе тогда присутствует напряжение, равное ( U +пит— 2,8) В. При необходимости его можно выбрать в качестве опорного (не само напряжение относительно «земли», которая в данном случае есть довольно условное понятие, а именно разность между положительным питанием и выводом 32 ). Однако стабильность этого напряжения невелика, и так рекомендуется поступать только в уж очень экономичных схемах. Особенно это плохо в случае ПВ2, в которой выходные каскады за счет большого тока сильно (и неравномерно по времени из-за разного числа подключенных сегментов) нагревают кристалл и это напряжение начинает «плавать».

Тактовую частоту микросхем следует выбирать из ряда: 200, 100, 50 и 40 кГц, при этом частота помехи 50 Гц будет укладываться в длительность фазы интегрирования входного напряжения целое число раз и такая помеха будет интегрироваться полностью. Тактовую частоту можно задавать тремя способами: с помощью RC-цепочки, как показано на рис. 10.7, с помощью кварца, подключаемого к выводам 39 и 40, а также внешним генератором, выход которого подключается в выводу 40 (в ПВ2 при общим проводом служит вывод 21 «цифровая земля», а в ПВ5 — вывод 37 «TEST»). На практике чаще встречается первый способ, при этом частота будет равна примерно 0,45 R r С r. В фирменной документации на этот счет есть некоторая неясность, т. к. рекомендуется R r= 100 кОм при С r= 100 пФ, и тогда согласно приведенной формуле частота должна составить 45 кГц. Это далеко и от 40 и от 50 кГц, рекомендуемых для частоты помехи 50 Гц, и не очень совпадает с 48 кГц, рекомендуемыми для помехи 60 Гц. Все отечественные описания микросхем ПВ2 и ПВ5 изящно обходят этот вопрос, просто повторяя фирменные рекомендации. Думается, что составители документации имели в виду все же помеху 60 Гц (т. е. тактовую частоту 48 кГц), поэтому в отечественном варианте следует снизить емкость С rдо 91 пФ — так будет корректнее. Вообще, ошибка в ±5 % тут вполне допустима.

Номиналы емкостей и резисторов на рис. 10.7 приведены для случая опорного напряжения, равного 1 В (и тактовой частоты 50 кГц). При опорном напряжении 0,1 В С акнужно увеличить до 0,47 мкФ, С интуменьшить до 0,1 мкФ, а R интуменьшить до 47 кОм. В остальных случаях эти номиналы должны быть изменены в указанных пределах примерно пропорционально изменению опорного напряжения.

К выбору типов компонентов следует подходить весьма тщательно, от этого сильно зависит в первую очередь линейность преобразования. Резисторы все могут быть С1-4 (МЛТ). Конденсатор "тактового генератора С генможет быть керамическим (типа КМ-5, КМ-6). Остальные конденсаторы ( С инт, С оп, и С ак) должны быть с органическим диэлектриком, лучше всего фторопластовые (К72П-6, К72-9) или полистироловые (К71-4, К71-5), но подойдут и полиэтилентерефталатные (К73-16, К73-17). Эти конденсаторы могут ужаснуть вас своими размерами, но ничего не поделаешь — такова плата за стабильность. Высокие конденсаторы (как К73-17) следует устанавливать лежа, хотя при этом площадь платы увеличивается, но зато конденсаторы не торчат над всеми остальными компонентами Это, кроме всего прочего, повышает надежность монтажа, т. к. меньше вероятность «выкорчевать» конденсатор, случайно положив поверх платы книгу «Занимательная микроэлектроника».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Занимательная микроэлектроника»

Представляем Вашему вниманию похожие книги на «Занимательная микроэлектроника» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Занимательная микроэлектроника»

Обсуждение, отзывы о книге «Занимательная микроэлектроника» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x