Это эквивалент формулы Хаббла с уточнением: скорость должна быть чистым расширением. Функция H(t) остается неизвестной, для ее определения нужно использовать другие уравнения, а лучше — релятивистские уравнения сохранения импульса и энергии, которые выходят за рамки нашего приложения. H(t) может принимать положительные, отрицательные, нулевые значения, знак может меняться с течением времени. Наблюдения показывают, что сегодня H 0положительна. Наблюдается расширение.
Рассмотрим альтернативное рассуждение, которое кажется более простым и основано на уравнении Бернулли. Этот ученый объяснил нам много любопытного в поведении жидкостей. Его знаменитая формула в своей самой известной форме выглядит так:
p+1/2pv2 = постоянная,
где р — давление. Эта формула выполняется, когда в разных точках жидкости гравитация одинакова. Если имеются изменения гравитации, надо добавить в формулу потенциальную гравитационную энергию. Нам не обязательно учитывать давление, так как космологический принцип говорит, что давление во всех точках одинаково; его значение может перейти
ко второму члену и добавиться к постоянной. Потенциальная энергия на единицу объема записывается как ~(GM l)/r, где масса М = р4лг*/3, затем
-4/3πGp²r² + 1/2pv²
Заметьте, что М(r) — масса, содержащаяся в сфере с радиусом r.
Чтобы найти величину постоянной, рассмотрим «здесь» с r = 0. Мы не видим скорости расширения. Очевидно, что r = 0, постоянная второго члена равна нулю. Таким образом, получаем
v = (8/3πGp) ½r = H 0r
Мы не только получили закон Хаббла, но и рассчитали величину H 0:
H 0= √(8/3πGp).
Об этом ли значении говорят релятивистские модели? Не совсем — это величина, соответствующая критической, или плоской, Вселенной с нулевой кривизной. Так как мы исходили из классических уравнений, сложно претендовать на большую точность. Формулировки, представленные в этом приложении, конечно же, очень поверхностны, но они иллюстрируют то, что закон Хаббла — прямое следствие космологического принципа и его мог бы открыть даже студент-физик. Естественно, апостериори все открытия выглядят очевиднее.
Мы не отрицаем заслуг Хаббла, ведь наши рассуждения ретроспективны. Когда процессы известны, их легче оценивать, так что это приложение можно назвать предсказанием постфактум. В любом случае, доказательство закона требовало наблюдений. В те времена непросто было утверждать, что Вселенная расширяется. Как мы знаем, даже Эйнштейн не решался этого делать.
Список рекомендуемой литературы
Battaner, Е., Un fisico еп la calle, Granada, Editorial Universidad de Granada, 2010.
—: Ftsica de las noches estrelladas, Barcelona, Tusquets, 2010.
—: iQuees el universe?iQue es el hombre?, Madrid, Alianza, 2011.
Christianson, G. E., Edwin Hubble. Mariner of the Nebulae, Chicago, University of Chicago Press, 1995.
Hubble, E., The Realm of the Nebulae, Yale, Yale University Press, 1936.
Kragh, H„ Historia de la cosmologia, Barcelona, Critica, 2008.
Rees, M., Antes delprincipio. El cosmos у otros universes, Barcelona, Tusquets Editores, 1999.
Sharov, A. S. у Novikov, I. D., Edwin Hubble. The Discoverer of the Big-Bang Universe, Cambridge, Cambridge University Press, 2005.
Указатель
Адамс, Уолтер 12, 68-70, 72, 74, 75, 77, 85, 108, 127, 141, 142, 144, 146, 153, 154
Андромеда (М31) 11, 13, 50, 64, 66, 67, 80, 81, 82, 85, 87, 89, 108, 116
апекс 108
Арп, Хэлтон 158
Бааде, Вальтер 76, 87, 152-154
балдж 95-98, 152
Барнард, Эдвард 69, 70, 158
Бейли, Солон 78
Бернулли теорема 159, 160
Бец, Марта 43, 80
Большое сжатие 126, 131-133
Большой взрыв 9, 10, 105, 109, 113, 114, 125-127, 129, 131-134
большой разрыв 130
Бонди, Герман 126
Боуэн, Айра 154
Брехт, Бертольд 57
Бруно, Джордано 117
Вселенная
гомогенная 10, 117, 118, 122, 138, 139
де Ситтера 124, 129, 130, 135, 136
закрытая 126, 131-133
критическая 128, 131-136, 139, 161
моногалактическая 42
открытая 128, 131, 132
плоская 128 (см. также критическая Вселенная)
расширение 8, 10, 66, 67, 75, 106, 108, 116, 124-126, 128-131, 135, 153, 160, 161
с доминирующим излучением 133, 134
фрактальная 118
Эйнштейна — де Ситтера 131, 135, 136 (см. также критическая Вселенная)
возраст Вселенной 153
галактики
бар 88, 91
иррегулярные 88, 94, 95, 97
линзовидные 8, 88, 97
поздние 92, 94, 96, 97, 106
ранние 92, 94, 96, 106
спиральные 8, 66-69, 81, 82, 87-89, 91-93, 95-97, 102, 108, 152, 153
эллиптические 8, 88, 89, 92, 93, 96, 97, 152
Гейбл, Кларк 57
Герцшпрунг, Эйнар 67, 68, 79, 80
Гершель, Уильям 8, 50, 59, 62, 71, 82
Говард, Лесли 57
Годдар, Полетт 57
Голд, Томми 126
гомогенность 7, 119, 121, 138
Гумбольдт, Александр фон 62
Джеймс, Джесси 18, 19
Джинс, Джеймс Хопвуд 50, 52, 56, 57, 92, 106, 158
диск 62, 95-97, 152
Дисней, Уолт 57
Читать дальше