В конце концов нейтронная звезда полностью вытягивает внешние слои красного гиганта, который превращается в белый карлик, обращающийся вокруг миллисекундного пульсара. Чтобы обратить внимание на главную особенность миллисекундных пульсаров, а именно увеличение скорости вращения в результате воздействия внешнего объекта, их называют раскрученными пульсарами . Точность, с которой они испускают импульсы, еще выше, чем у обычных пульсаров. Степень точности настолько велика, что на нее может повлиять даже крошечный объект. И последствия этого влияния можно наблюдать.
51 Пегаса b часто называют первой экзопланетой, открытой астрономами. В действительности этот горячий юпитер был первой планетой, найденной в системе с солнцеподобной звездой. Статус самой первой экзопланеты, обнаруженной людьми, делят два мира, обращающиеся вокруг миллисекундного пульсара PSR B1257+12.
История открытия PSR B1257+12 необычна тем, что началась она не с ввода в строй новейшего телескопа, а с поломки старого. В 1990 г. возникла необходимость провести ремонтные работы на радиотелескопе «Аресибо» — том самом, с помощью которого был найден первый миллисекундный пульсар. Незадолго до того в его конструкции были обнаружены трещины. Брать на себя риск эксплуатации неисправного телескопа никто не собирался, особенно после одного инцидента: за несколько лет до того из-за повреждения элементов конструкции произошло обрушение 90-метрового радиотелескопа в американском городке Грин-Бэнк. «Аресибо» мог продолжать работу и во время ремонта. Единственное ограничение было связано с тем, что он должен был оставаться в одном положении, то есть он не мог поворачиваться вслед за объектом, отслеживаемым в ночном небе. В результате перечень проектов, в которых он мог использоваться, существенно сузился, и спрос на услуги телескопа сильно упал. Но нашелся человек, который понял, как извлечь максимальную пользу из этого вынужденного простоя. Им стал работавший на «Аресибо» польский астроном Александр Вольщан. Он планировал провести обзорную съемку неба с целью обнаружения миллисекундных пульсаров. Для реализации этого плана потребовалось бы в течение месяца использовать почти треть мощности самого большого на тот момент телескопа в мире. В обычных обстоятельствах его заявку просто бы отклонили. Однако, учитывая падение спроса на телескоп и то, что Вольщан уже работал с ним, ему выделили время.
Так Вольщан обнаружил два новых пульсара. Первый был частью двойной системы с еще одной нейтронной звездой. Поначалу именно он показался исследователю более интересным, но затем Вольщан обратил внимание на аномальный период вращения второго пульсара.
Обнаруженный Вольщаном пульсар PSR B1257+12 стал пятым известным нам миллисекундным пульсаром. Его период вращения составлял 6,2 миллисекунды, что соответствовало 161 оборотам в секунду. Но когда Вольщан пытался спрогнозировать частоту, с которой этот источник радиоизлучения должен быть виден на Земле, у него ничего не получалось. Это было особенно странно, учитывая, что он имел дело с миллисекундным пульсаром. Раскручиваясь при взаимодействии со своим компаньоном, такие старые нейтронные звезды подвержены внешним воздействиям в меньшей степени, чем их более молодые или медленные собратья. Возможно, эта аномалия объяснялась орбитой пульсара. При вращении двух звезд в одной системе расстояние до Земли будет слегка колебаться, а вместе с ним — и частота регистрируемых импульсов. Однако наблюдение показывало, что никакого компаньона рядом с пульсаром не было (что само по себе было странно для раскрученного пульсара), а колебания частоты сигнала от него казались слишком незначительными, чтобы их причиной могло быть взаимодействие с соседом размером со звезду. Гипотеза о наличии менее крупного компаньона также не имела никакого смысла, так как в фазе красного гиганта в эволюции пульсара такой объект просто бы испарился или был бы выброшен из области действия гравитации пульсара вследствие уменьшения массы при взрыве сверхновой.
Вольщан предположил, что проблема заключалась в неточном определении местоположения пульсара. Если эти данные были неверны, то и результаты расчетов расстояния до Земли также должны были быть неправильными. Наличие такой ошибки привело бы к изменению ожидаемого времени поступления радиоимпульсов и тем самым свело на нет все расчеты Вольщана. Чтобы получить более точные данные, Вольщан обратился за помощью к Дейлу Фрейлу из Национальной радиоастрономической обсерватории США, работавшему на телескопе с изобретательным названием «Сверхбольшая антенная система» (Very Large Array, сокращенно — VLA). Телескоп VLA находится в штате Нью-Мексико и состоит из 27 отдельных параболических антенн, образующих в плане гигантскую букву Y. Благодаря обобщению данных с разных антенн обеспечивается исключительно высокая точность измерений.
Читать дальше
Конец ознакомительного отрывка
Купить книгу