Несмотря на большую роль углерода в эволюции биологической жизни, на Земле его на удивление мало. Девяносто пять процентов массы Земли приходятся на железо, кремний, кислород и магний. Большая часть железа заключена в земном ядре. Остальные элементы образуют силикатную мантию и кору. Углерод выступает в качестве второстепенного компонента: на него приходится менее 0,2% массы Земли. Столь мизерная доля объясняется тем, что конденсация углерода в твердые частицы происходила в холодной внешней области Солнечной системе. В области формирования миров земной группы он оставался в форме пара, и в момент, когда Солнце заставило рассеяться газовый диск, его оттуда просто выдуло. Как и в случае с океанами, о возможных источниках происхождения которых мы говорили в главе 4, в начале существования Земли углерода на ней не было. Небольшое его количество было занесено на нашу планету метеоритами из внешней области Солнечной системы.
При увеличении доли углерода в протопланетном диске до величины, сопоставимой с долей атомов кислорода (или даже превышающей ее), свойства твердого строительного материала в системе меняются. Доминирование атомов углерода приводит к тому, что кремний начинает связываться не с кислородом, а с углеродом, образуя не силикат, а твердый карбид кремния. Поэтому в составе планет, сформированных из такой пыли, будут преобладать не соединения кислорода, а углерод и карбид кремния.
Если недра 55 Рака e имеют именно такой богатый углеродом состав, необходимость в обеспечивающей объем оболочке из более легкого материала отпадает. Состоящая из железа, углерода и кремния планета с массой, зафиксированной в ходе наблюдений за 55 Рака e, может иметь как раз тот радиус, который нам нужен. Значит, можно не только отбросить гипотезу о сверхкритичной воде, но и констатировать, что воды на 55 Рака e, возможно, нет совсем.
При обилии углерода в протопланетном диске кислород окажется во власти этого элемента, результатом чего станет формирование токсичного монооксида углерода. Кислорода, из которого при связывании с водородом могла бы образоваться вода, останется совсем немного. Поэтому даже во внешней планетной системе льда из воды может просто не быть. Торренс Джонсон, исследователь из Лаборатории реактивного движения NASA в Пасадене, занимавшийся моделированием процесса образования планетезималей в богатых углеродом системах, как-то с сожалением заметил: «За снеговой линией, возможно, никакого снега и нет».
Отсутствие воды в планетной системе означает, что, даже если бы 55 Рака e находилась на орбите, обеспечивающей более благоприятный климат, из-за обилия углерода на ней бы не было условий для поддержания жизни в известной нам сейчас форме. Джонатан Лунин из Корнеллского университета, работавший вместе с Джонсоном, прокомментировал это наблюдение не без доли иронии: «Как это ни парадоксально, но когда углерода, главного элемента жизни, становится слишком много, он крадет кислород, необходимый для формирования воды — растворителя, без которого известные нам формы жизни просто немыслимы».
Если оставить в стороне отсутствие воды, какие еще особенности должны быть у углеродной планеты? Скорее всего, ее кора будет состоять из графита — вещества, из которого делают стержни для карандашей. В условиях высокого давления под поверхностью планет образуется алмазная мантия. Значительная часть углерода в мантии Земли также имеет форму алмазов, превращаясь в карбонаты при окислении в условиях более низкого давления в прилегающих к коре слоях. Почему же мы до сих пор не купаемся в бриллиантах? Причина в том, что общее количество углерода исключительно мало — менее 0,2%, в то время как на кислород приходится чуть больше 50%. На богатой углеродом планете алмазов будет столько, что в результате вулканической активности на ее поверхности должны разливаться настоящие реки этих сверкающих драгоценных камней.
Если бы на такой планете могло существовать вещество в жидкой форме, оно также было бы связано с углеродом — например, это могло бы быть море дегтя. Добавим также высокий уровень содержания моноксида и диоксида углерода в атмосфере и постоянно висящую в воздухе пелену смога из-за углеродных дождей. И это еще оптимистичный сценарий. Ведь на такой планете может вовсе не быть атмосферы.
Под поверхностью Земли безостановочно кипит работа. Кора планеты разделена на застывшие участки, которые называют тектоническими плитами . Под ними — мантия. Несмотря на кажущуюся монолитность, в масштабе геологического времени, измеряемого миллионами лет, мантия на самом деле движется как жидкость с чрезвычайно высокой вязкостью. Выступая в качестве своего рода конвейерной ленты, она заставляет перемещаться тектонические плиты. Когда две плиты расходятся, находящаяся под ними мантия выходит на поверхность и остывает, образуя новый участок коры. Там, где плиты соскальзывают друг под друга, старые более толстые участки коры начинают плавиться, в результате чего в таких переходных зонах часто образуются вулканы. Перемещения коры и мантии обеспечивают циркуляцию атмосферы и питательных веществ в пределах планеты, а также способствуют генерации магнитного поля. Но стоит заменить нашу мантию на алмазную, как эта важнейшая активность будет существенно затруднена.
Читать дальше
Конец ознакомительного отрывка
Купить книгу