Еще одна проблема, которая связана с близостью к звезде, — скорость планетезималей и эмбрионов планет. Эти каменистые тела быстро двигались по сходящимся орбитам. На последнем этапе процесса планетообразования все могло закончиться серией столкновений на высоких скоростях, способных лишить молодой мир и атмосферы, и воды.
Второй вопрос обусловлен тем фактом, что, судя по всему, других планет после Кеплер-186 f в этой системе нет. Разумеется, Земля находится в совершенно других условиях. За ее орбитой располагаются Марс и область газовых гигантов. Особенно большую роль в эволюции нашей планеты сыграл Юпитер, который благодаря своей мощной гравитации, как считается, обеспечил попадание во внутреннюю область Солнечной системы богатых льдом планетезималей, давших воду для наших океанов. Следует оговориться, что такой гравитационный пинбол с участием газовых гигантов может иметь печальные последствия для молодой планеты. Однако отсутствие воды в любом случае исключает возможность зарождения жизни земного типа. Значит ли это, что отсутствие такого рассеивателя планетезималей делает Кеплер-186 f безводным миром?
В этом смысле положение Кеплер-186 f кажется весьма незавидным. Впрочем, если взглянуть на устройство планетной системы, можно прийти к другому, более обнадеживающему выводу. Ее составляют пять миров, находящихся в непосредственной близости от звезды. Чтобы они могли сформироваться на своих текущих орбитах, первичный протопланетный диск должен был содержать объем вещества, превышающий массу Земли в 10 раз. Причем большая его часть должна была быть сосредоточена на расстоянии не более 0,4 а.е. от звезды. Как показывают наблюдения, в дисках вокруг молодых звезд такое распределение вещества встречается весьма редко. Более вероятным представляется сценарий, в котором планеты сформировались на большем расстоянии от звезды Кеплер-186, а затем мигрировали во внутреннюю часть системы. В этом случае отпадают обе проблемы: при формировании в более холодных внешних областях диска планеты могли обрасти льдом, что позже позволило им превратиться в богатые водой миры. По завершении бурной фазы протозвезды планеты могли мигрировать к центру системы в результате взаимодействия с газом. И вот тут-то крайнее положение Кеплер-186 f могло быть ей только на руку, так ей было проще не попасть в приливный захват. При обычном вращении поверхность планеты нагревается равномерно, поэтому на ней вполне могла сохраниться вода.
И все же… Миграция не дает ответов на все вопросы. Кеплер-186 f все равно находится слишком близко к звезде — на ней должны в полной мере ощущаться все «прелести» космической погоды, тон в которой задает звездный ветер. Без мощного магнитного поля планета легко могла лишиться своей атмосферы, а возможность формирования магнитного поля планеты определяется ее геологическим строением. Однако даже если размер Кеплер-186 f свидетельствует в пользу того, что это каменистая планета, узнать, какие именно горные породы ее образуют, не представляется возможным.
Судя по разнообразию гипотез относительно состава 55 Рака e, сам факт наличия твердой поверхности далеко не всегда означает, что планета походит на Землю. Масса планеты может существенно различаться в зависимости от соотношения железа, силикатов и льда. При таком же размере, как у Земли, состоящая из одного лишь железа планета может весить почти как 4 наших Земли, тогда как масса планеты, в составе которой преобладает лед, будет равна 0,32 массы Земли. Если доля железа и силикатов в составе Кеплер-186 f такая же, как у нашей планеты, ее масса составляет 1,44 массы Земли. Таким образом, несмотря на сходство в размере, который всего лишь на 10% превышает размер Земли, масса ее может быть совсем другой — от трети до полутора масс нашей планеты. Столь значительный разброс в оценках массы означает, что разные ее значения будут соответствовать разным уровням гравитации и внутреннего давления. В итоге горные породы на такой планете могут не обладать той степенью подвижности, которая необходима для формирования магнитного поля. Различия в гравитации также приведут к различиям в составе захваченных планетой атмосферных газов.
Однако, как и в других случаях, мы можем посмотреть на эту ситуацию с иной точки зрения. Как показывают результаты моделирования воздействия звездных вспышек и звездного ветра на планету без магнитного поля в системах с красным карликом, подвержены ему могут быть только верхние слои атмосферы. Бурная активность звезды может обходить стороной поверхность планеты, не причиняя ей вреда. Впрочем, пока мы не исследуем атмосферы некрупных планет за пределами нашей Солнечной системы, все рассуждения об условиях на их поверхности будут носить во многом умозрительный характер.
Читать дальше
Конец ознакомительного отрывка
Купить книгу