Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]

Здесь есть возможность читать онлайн «Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Альпина нон-фикшн, Жанр: sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]
  • Автор:
  • Издательство:
    Альпина нон-фикшн
  • Жанр:
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-9614-4944-0
  • Рейтинг книги:
    5 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Что вы думаете о машинах, которые думают?» На этот вопрос — и на другие вопросы, вытекающие из него, — отвечают ученые и популяризаторы науки, инженеры и философы, писатели-фантасты и прочие люди искусства — без малого две сотни интеллектуалов. Российскому читателю многие из них хорошо известны: Стивен Пинкер, Лоуренс Краусс, Фрэнк Вильчек, Роберт Сапольски, Мартин Рис, Шон Кэрролл, Ник Бостром, Мартин Селигман, Майкл Шермер, Дэниел Деннет, Марио Ливио, Дэниел Эверетт, Джон Маркофф, Эрик Тополь, Сэт Ллойд, Фримен Дайсон, Карло Ровелли… Их взгляды на предмет порой радикально различаются, кто-то считает искусственный интеллект благом, кто-то — злом, кто-то — нашим неизбежным будущим, кто-то — вздором, а кто-то — уже существующей реальностью. Такое многообразие мнений поможет читателю составить целостное и всестороннее представление о проблеме.

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рассмотрим наиболее популярные алгоритмы больших данных и машинного обучения. Один алгоритм неконтролируемый (ему не требуется учитель, чтобы присваивать данным метки), другой — контролируемый (ему требуется учитель), именно с ними связана значительная часть работ в области прикладного ИИ.

Неконтролируемый алгоритм называется кластеризацией методом k-средних, и, возможно, это самый популярный способ работы с большими данными. Он объединяет подобное с подобным и лежит в основе Google News. Начнем с миллиона измерительных точек. Сгруппируем их в 10, 50 или 100 кластеров или паттернов. Это вычислительно сложная задача. Но кластеризация методом k-средних является итеративным способом формирования кластеров по меньшей мере с 1960-х годов. Что изменилось, так это размерность задач, с которыми могут справляться современные компьютеры. Сам алгоритм называли разными именами, так или иначе намекающими на ИИ, например «самоорганизующаяся карта» или «адаптивная квантизация векторов». Но это все тот же старый двухступенчатый итеративный алгоритм из 1960-х.

Контролируемый алгоритм — это алгоритм нейронной сети, который называется обратным распространением. Именно он чаще всего используется в машинном обучении. Обратное распространение получило свое название в 1980-х годах. Появилось оно по меньшей мере десятью годами ранее. Алгоритм обучается на основе образцов, которые ему дает пользователь или супервизор. Например, вы показываете изображения с вашим лицом и без него. Они проходят через несколько слоев похожих на коммутаторы нейронов, пока те не эмитируют окончательный результат, который может быть представлен одним числом. Вам нужно получить число «1», если на входном изображении есть ваше лицо, и «0» в противном случае. Сеть изучает паттерны вашего лица, пока перебирает их в ходе тысяч и миллионов итераций. Ни на одном из этих шагов или переборов не возникает никакого интеллекта или мышления. И ни одно из уточнений любого из сотен или тысяч параметров сети не отражает того, как настоящие синапсы узнают новые паттерны нервной стимуляции. Скорее это как если бы люди выбирали, что им делать дальше, на основании ничтожного отрицательного воздействия, которое их действия окажут на процентную ставку по десятилетним облигациям государственного займа США.

Вывод: оба популярных алгоритма ИИ — это отдельные случаи одного и того же стандартного алгоритма современной статистики, алгоритма ожидания и максимизации (EM-алгоритма). Поэтому любой предположительно связанный с ними интеллект — просто заурядная статистика. EM — это двухступенчатая итеративная схема подъема на холм вероятности. Он не всегда попадает на вершину самого высокого холма — как правило, это оказывается вершина ближайшего холма. Возможно, ни один алгоритм обучения на большее и неспособен. Аккуратно добавленный шум и другие поправки могут ускорить восхождение. Но все пути так или иначе сходятся к вершине холма, к области наиболее правдоподобного равновесия. Все они заканчиваются в своеобразной нирване машинного обучения с локально-оптимальным распознаванием образа или аппроксимацией функции. Эти точки равновесия на вершинах холмов будут выглядеть все более впечатляюще по мере увеличения скорости компьютеров. Но с мышлением они связаны не больше, чем вычисление некоторых сумм и выбор наибольшей из них.

Следовательно, значительная часть машинного мышления — это просто машинное «восхождение на холмы».

Обзорная статья, написанная в 1961 году Марвином Минским, «Шаги к искусственному интеллекту» (Steps Toward Artifcial Intelligence) в этом контексте может стать поучительным чтением, поскольку со времени ее написания в плане развития алгоритмов мало что изменилось. Минский даже предсказал нашу склонность видеть в требующем больших вычислительных ресурсов «восхождении на холмы» какую-то исключительную познавательную способность: «Возможно, то, что относится к обычному поиску экстремума на одном уровне, однажды покажется (на более низком уровне) неожиданными „озарениями“».

Есть другие алгоритмы ИИ, но большая их часть попадает в те категории, о которых писал Минский. Один из примеров — выполнение алгоритмов с байесовской вероятностью на дереве поиска или графах. В этом случае приходится бороться с экспоненциальным ветвлением или другими схожими формами проклятия размерности. Другой пример — выпуклость или иная нелинейно ограниченная оптимизация для классификации паттернов. Итальянский математик Жозеф Луи Лагранж нашел алгоритм общего решения, которым мы пользуемся до сих пор. Он обнаружил его в 1811 году. Хитроумные трюки и ловкие манипуляции всегда могут быть полезны. Но прогресс крайне сильно зависит от того, чтобы эти алгоритмы выполнялись на все более быстрых компьютерах. Сами алгоритмы состоят в основном из большого числа операций сложения и умножения, а значит, маловероятно, что они в какой-то момент неожиданно проснутся и захватят мир. Вместо этого они научатся еще лучше учиться и распознавать еще более сложные паттерны просто потому, что будут быстрее складывать и умножать.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]»

Представляем Вашему вниманию похожие книги на «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Array Коллектив авторов - Выдающиеся ученые о познании
Array Коллектив авторов
Коллектив авторов - Ученые против войны (с илл.)
Коллектив авторов
Отзывы о книге «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]»

Обсуждение, отзывы о книге «Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x