Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Здесь есть возможность читать онлайн «Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: КоЛибри, Жанр: sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
  • Автор:
  • Издательство:
    КоЛибри
  • Жанр:
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-389-01770-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
* * *

Первый вопрос шевалье де Мэрэ касался выпадения двух шестерок. Сколько раз надо бросать пару костей, чтобы появление двух шестерок стало более вероятным, чем их непоявление? При одном бросании двух костей шанс выпадения двух шестерок равен 1/ 36, что есть 0,028. Шанс получить две шестерки за два бросания пары костей есть 1 минус вероятность невыпадения двух шестерок за два бросания, то есть 1 - ( 35/ 36× 35/ 36). Это равно 71/ 129, или 0,055. (Заметим, что шанс получить две шестерки за два бросания не равен 1/ 36× 1/ 36. Это число выражает шанс появления двух шестерок в обоих бросаниях. Вероятность же, которая нас интересует, — это шанс выпадения двух шестерок по крайней мере один раз, с учетом исходов, когда две шестерки выпадают или при первом бросании, или при втором, или при обоих. Игроку для выигрыша требуется, чтобы две шестерки выпали только один раз, а не при каждом бросании.) Шанс выпадения двух шестерок при трех бросаниях двух костей равен 1 минус вероятность их невыпадения, что в данном случае равно 1 - ( 35/ 36× 35/ 36× 35/ 36) = 3781/ 46656, или 0,081.

Как видим, чем большее число раз бросаются кости, тем выше вероятность выпадения двух шестерок: 0,028 при одном бросании, 0,055 при двух и 0,081 при трех. Поэтому исходный вопрос можно перефразировать так: «После скольких бросаний эта дробь превысит 0,5?» — ведь вероятность, превосходящая половину, означает, что событие скорее произойдет, чем нет. Паскаль получил правильный ответ: требуется 25 бросаний. Если шевалье ставил на выпадение двух шестерок за 24 бросания, то следовало ожидать, что он потеряет деньги, но после 25 бросаний шансы начинают склоняться в его сторону, и он может рассчитывать на выигрыш.

Второй вопрос де Мэрэ — о разделении денег, стоящих на кону, — часто называют задачей о разделе ставки , и вопрос этот ставился и до того, как за него взялись Ферма и Паскаль, но правильного решения никто не нашел. Переформулируем сначала этот вопрос в терминах орлов и решек. Жан выигрывает каждый раунд, когда монета падает орлом, а Жак — когда решкой. Первый из игроков, победивший в трех раундах, забирает стоящие на кону деньги в размере 64 франков. Пусть теперь в тот момент, когда счет 2:1 в пользу Жана (два орла и одна решка), игру приходится внезапно прервать. Если такое случилось, то как самым справедливым образом поделить банк? Один возможный ответ такой: деньги должен забрать Жан, потому что он лидирует; однако при этом не учитывается, что и у Жака есть шанс выиграть. А вот другой возможный ответ: Жан должен получить вдвое больше, чем Жак; но и это не вполне справедливо, потому что счет 2:1 отражает лишь прошлые события и никоим образом не говорит о том, что случится в будущем. Способности Жана к угадыванию ничем не превосходят способности Жака. Каждый раз, когда они бросают кости, имеются шансы 50:50, что монета ляжет орлом или решкой. Наилучший — и самый справедливый — анализ состоит в том, чтобы рассмотреть, что может произойти в будущем. Если монету бросают еще два раза, то вероятные исходы таковы:

орел, орел
орел, решка
решка, орел
решка, решка

После этих двух подбрасываний монеты игра непременно закончится чьей-то победой. В первых трех случаях побеждает Жан, а в четвертом — Жак. Самый справедливый способ поделить банк — это отдать 3/ 4Жану и 1/ 4Жаку, то есть 48 франков — Жану, и 16 — Жаку. Теперь это кажется простым, но в XVII столетии сама мысль о том, что случайные события, которые еще не произошли, можно анализировать математически, представляла собой мощный концептуальный прорыв. Именно эта концепция лежит в основе нашего научного понимания значительной части современного мира, от физики до финансов и от медицины до маркетинговых исследований.

* * *

Через несколько месяцев после того, как он отправил письмо Ферма, Паскаль пережил мистический транс. Придя в себя, он записал свои мысли на листке бумаги, который затем постоянно носил с собой в специальном кармашке, вшитом в подкладку камзола [54] Имеется в виду так называемый «Мемориал, или Амулет Паскаля» ( Примеч. перев. ) . Быть может, это была реакция на страх близкой смерти — после случая, когда его карета лишь чудом удержалась на мосту, в то время как передние лошади уже сорвались за парапет, — а может, это была эмоциональная реакция на упадок игорных заведений в предреволюционной Франции — но, как бы то ни было, в Паскале ожила его тяга к идеям янсенизма [55] Янсенизм — религиозное движение внутри католицизма, подчеркивающее греховную природу человека и необходимость божественной благодати. Основатель — Корнелий Янсений (1585–1638). ( Примеч. перев. ) , строгому варианту католицизма, и он забросил математику, сосредоточившись на теологии и философии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики»

Представляем Вашему вниманию похожие книги на «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Алекс Беллос
Отзывы о книге «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики»

Обсуждение, отзывы о книге «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x