В 1947 г. два молодых физика из лаборатории Изидора Раби сделали важные открытия, касающиеся воздействия электромагнитного поля на электроны в атоме. Поликарп Каш занимался исследованием магнитного момента электрона, а Уиллис Юджин Лэмб изучал тонкую структуру спектра водорода. Их исследования сыграли большую роль в окончательном становлении квантовой электродинамики, основы которой заложили Ричард Фейнман, Джулиус Швингер и Синьитиро Томонага — лауреаты Нобелевской премии 1965 г.
Результаты спектральных исследований Уиллиса Лэмба показали, что электрон в атоме водорода не движется точно по орбитам, предписанным теорией. Он как будто непрерывно колеблется, отклоняясь то в одну, то в другую сторону. Согласно квантовой электродинамике, этот эффект обусловлен взаимодействием между электроном и вакуумом.
В современной физике все более утверждается мнение, что вакуум — это отнюдь не «пустота», вакуум имеет свою микроструктуру. Так, под действием электромагнитного поля в вакууме непрерывно происходит процесс рождения и аннигиляции электрон-позитронных пар. Именно эти так называемые виртуальные частицы нарушают движение электрона по орбите, что и обнаруживается по спектральным линиям излучения.
В опытах Поликарпа Каша с использованием метода молекулярных пучков определялось отношение магнитного момента протона к орбитальному магнитному моменту электрона в атоме водорода. Оказалось, что магнитный момент электрона больше, чем это следовало из теории Дирака. Как и результаты Лэмба, это объяснялось тем, что электрон не является «голым», а окружен виртуальными частицами-призраками, рождающимися в вакууме.
Точнейшие исследования, проведенные в конце 40-х годов, приоткрыли завесу и над тайнами других, более фундаментальных свойств материи, поставив принципиальный вопрос о структуре вакуума и вообще о существовании «абсолютного» вакуума. В последнее время стали даже поговаривать о возврате к представлениям об эфире, столь распространенным вплоть до конца XIX в., но, разумеется, на качественно новом уровне. Большой научный вклад Уиллиса Лэмба и Поликарпа Каша довольно скоро получил и официальное признание — в 1955 г. они были удостоены Нобелевской премии по физике.
Согласно представлениям классической физики, чтобы перейти из одного энергетического состояния в другое, частица должна преодолеть так называемый потенциальный барьер, т. е. должна обладать достаточной. энергией, чтобы «оторваться» от системы, в которой находится. Однако в странном мире квантовых явлений частицы свободны от. этих ограничений. Они как бы используют некий «туннель», который позволяет им проникать через потенциальный барьер. Это довольно странное на первый взгляд явление вытекает из принципа неопределенности Гейзенберга.
Рассмотрим в качестве примера альфа-частицу. Она состоит из двух протонов и двух нейтронов, находящихся в атомном ядре. Если альфа-частица получает достаточно большую энергию, то она, преодолев ядерные силы, покидает ядро — тогда-то и наблюдается альфа-излучение. Однако, как указывает соотношение неопределенностей, обычно невозможно одновременно определить координату и импульс микрочастицы. Этим и объясняется следующее парадоксальное явление: частицы с энергией меньшей, чем необходимо для преодоления потенциального барьера, могут пройти сквозь него.
Представление о туннельном эффекте было применено для объяснения не только альфа-распада, но и ряда других явлений. В 1957 г. японский физик Лео Эсаки, работавший в компании «Сони», открыл экспериментально подобный эффект у полупроводников и создал первый туннельный диод. В те годы исследование туннельного эффекта было новостью в науке, и им занимались многие ученые.
В 1960 г. норвежский физик Айвар Джайевер из «Дженерал, электрик» провел первые наблюдения туннельного эффекта в сверхпроводниках, в которых электроны туннелировали из одного сверхпроводника в другой, и изучил закономерности этого явления. Он, в частности, высказал мысль о возможности использования туннельного эффекта для измерения температуры. В 1962 г. английский физик Брайан Джозефсон, лишь два года назад закончивший Кембриджский университет, предсказал новый вид туннелирования, который действительно вскоре был открыт; он получил название «эффект Джозефсона».
Этот эффект наблюдается при протекании сверхпроводящего тока через очень тонкий слой диэлектрика, разделяющий два сверхпроводника (так называемый контакт Джозефсона). Если ток через контакт Джозефсона не превышает определенного значения, то падение напряжения на контакте отсутствует (так называемый стационарный эффект Джозефсона). Если же через контакт протекает ток больше критического, то возникает падение напряжения и контакт, излучает высокочастотные электромагнитные волны. Это нестационарный эффект Джозефсона, который был открыт в 1965 г. Джайевером.
Читать дальше