Валерий Чолаков - Нобелевские премии. Ученые и открытия

Здесь есть возможность читать онлайн «Валерий Чолаков - Нобелевские премии. Ученые и открытия» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 1987, Издательство: Мир, Жанр: sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Нобелевские премии. Ученые и открытия: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Нобелевские премии. Ученые и открытия»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга болгарского историка науки Валерия Чолакова рассказывает о выдающихся открытиях в естествознании (физике, химии, биологии, медицине), авторы которых были удостоены Нобелевской премии. Учрежденная в начале нынешнего века, эта премия откосится к числу самых почетных и авторитетных международных наград, и ее присуждение, безусловно, отмечает значительные вехи в истории мировой науки нашего столетия.
Адресована широкому кругу читателей, интересующихся историей науки и ее достижениями.

Нобелевские премии. Ученые и открытия — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Нобелевские премии. Ученые и открытия», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1958 г. Чарлз Таунс и Артур Шавлов из фирмы «Белл телефон лабораторис» предложили принцип лазера. Изменение первой буквы указывает на то, что здесь речь идет уже об усилении света при помощи индуцированного излучения (Lazer — аббревиатура от английского выражения Light Amplification by Stimulated Emission of Radiation). Шавлов предложил использовать для этой цели рубиновые кристаллы цилиндрической формы. В рубине (который представляет собой окись алюминия) имеются микроскопические вкрапления хрома, атомы которого излучают свет.

Рубиновый лазер был создан в 1960 г. американским физиком Теодором Меймзном. В этом приборе рубиновый стержень в течение короткого времени освещался мощным импульсом света. Атомы хрома в кристалле переходили в возбужденное состояние, а затем почти мгновенно возвращались на исходный уровень, испуская кванты света. С двух концов кристалла были помещены два плоских зеркала, причем одно из них — полупрозрачное. Отражаясь поочередно от этих зеркал, световые лучи опять попадают в кристалл, возбуждая новые атомы. Процесс нарастает лавинообразно до тех пор, пока наконец световой импульс не станет настолько мощным, что может пройти через полупрозрачное зеркало.

В этой схеме рубиновый кристалл может быть заменен другим твердым телом, содержащим подходящие для излучения атомы. Такие атомы могут быть рассеяны и в газовой среде. Еще в 1960 г. Али Джаваи, американский физик иранского происхождения, создал первый газовый лазер. Впоследствии появились жидкостные лазеры на основе неорганических соединений, а в 1966 г. были созданы первые жидкостные лазеры с органическими красителями, которые благодаря своей низкой стоимости получили широкое распространение.

За три десятилетия с момента создания квантовых генераторов они нашли широкое применение в самых различных сферах человеческой деятельности. Мазеры используются в качестве усилителей в радиотехнике. Лазеры проникают в промышленность, где их огромное по мощности излучение используется в различных технологических операциях. Физики пытаются осуществить с помощью лазерного луча термоядерную реакцию, а геодезисты измеряют расстояние до Луны с точностью до сантиметра. Тонкий лазерный луч играет роль скальпеля при тончайших хирургических операциях. Мы уже говорили о голографии, которая начала по-настоящему развиваться лишь с применением лазеров — мощных источников монохроматического и узконаправленного излучения.

Квантовые генераторы оказались одним из замечательных открытий нашего века. Важность их разработки была оценена Нобелевским комитетом по физике, который присудил в 1964 г. Нобелевскую премию А.М. Прохорову, Н.Г. Басову и Чарлзу Таунсу.

Труды французского исследователя Альфреда Кастлера в значительной степени подготовили почву для создания лазеров. Два года спустя признание пришло и к нему: в 1966 г. Кастлер стал лауреатом Нобелевской премии по физике.

В руках физиков лазер превратился в тонкий исследовательский инструмент. Его мощное монохроматическое излучение открыло новые возможности для спектроскопических исследований электронной оболочки атомов и молекул. Особенно интенсивно стали развиваться исследования в этой области после 1970 г., когда появились лазеры с меняющейся частотой излучения.

В результате стало возможным плавно регулировать длину волны излучения таким образом, чтобы энергия фотонов точно соответствовала частоте перехода между двумя энергетическими уровнями в атоме. Основы этой новой области — нелинейной лазерной спектроскопии — были заложены Николасом Бломбергеном из Гарвардского университета и независимо Артуром Шавловым из Станфордского университета. Большой вклад внесли также советские ученые С. Ахманов и Р. Хохлов.

Получив бурное развитие в 70-е годы, лазерная спектроскопия теперь стала исключительно точным методом исследования, позволяющим регистрировать даже отдельные атомы. На ее основе были разработаны методы стабилизации частоты газовых лазеров, излучение которых используется в качестве эталона длины и времени. Лазерный луч «зондирует» различные среды и позволяет делать экспресс-анализ их состава. С его помощью получают температуру в миллионы градусов и производят спектроскопию высокоионизированных атомов.

Нелинейная лазерная спектроскопия — один из самых совершенных методов исследования в современной экспериментальной физике. Николас Бломберген и Артур Шавлов, два исследователя, внесшие большой вклад в развитие этой области, получили в 1981 г. Нобелевскую премию по физике, разделив ее с Каем Сигбаном, одним из создателей метода рентгеновской спектроскопии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Нобелевские премии. Ученые и открытия»

Представляем Вашему вниманию похожие книги на «Нобелевские премии. Ученые и открытия» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Нобелевские премии. Ученые и открытия»

Обсуждение, отзывы о книге «Нобелевские премии. Ученые и открытия» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x