В первое десятилетие нашего века физики уже довольно много знали об элементарном носителе электрического заряда — электроне. Из химических экспериментов и физических исследований каналовых лучей было известно, что наименьшим носителем положительного заряда является ион водорода. Это было установлено Вином в 1898 г. и окончательно доказано в 1914 г., когда Резерфорд открыл частицу, названную им протоном.
Из этих двух типов частиц, связанных силами электромагнитного взаимодействия, физики строили модели не только атомов, но и атомного ядра. Было установлено, что массы атомных ядер обычно превышают общую массу протонов, которые должны были бы находиться в ядре, чтобы, обеспечить электрическую нейтральность атома (положительный заряд протонов должен компенсировать отрицательный заряд электронов в атоме). Учены? высказали предположение о существовании внутриядерных электронов, которые нейтрализуют часть заряда протонов. Эта схема, между прочим, была использована для объяснения бета-распада, при котором ядра «выбрасывают» электроны.
Первая модель атомного ядра была весьма искусственной, но в арсенале физики того времени просто, не было ничего более подходящего. Вскоре были получены данные, которые уже не удавалось объяснить с помощью такой модели. К их числу относится так называемая «азотная катастрофа». Некоторые характеристики ядер азота, в частности их спин, невозможно было объяснить на основе старой модели. В теории наступил кризис. Он был преодолен лишь в начале 30-х годов, когда было доказано, что в атомном ядре кроме протонов есть и другие частицы (но не электроны).
В 1919 г., облучая азот альфа-частицами, Резерфорд получил кислород. Эта была первая ядерная реакция по искусственному превращению элементов. Одиннадцать лет спустя в подобном эксперименте Вальтер Боте вместе со своим сотрудником Г. Бекером, облучая альфа-частицами различные элементы, получили исключительно сильное вторичное излучение, которое они приняли за жесткие гамма-лучи. Особенно сильный эффект наблюдался при использовании мишени из бериллия. В то время ученые находились под впечатлением открытия Артура Комптона, который установил, что рентгеновские лучи выбивают из вещества электроны. Поэтому, когда в 1932 г. супруги Жолио-Кюри, исследуя прохождение излучения бериллия через вещества, богатые водородом, наблюдали образование интенсивных потоков протонов, они истолковали это как чрезвычайно сильный эффект Комптона, при котором рентгеновский квант, имеющий очень большую энергию, отрывает протон от атома. Однако английский исследователь. Джеймс Чедвик предложил новое объяснение наблюдаемым явлениям.
Этот ученик и сотрудник Резерфорда также исследовал образование протонов, под действием излучения бериллия и пришел к выводу, что наблюдаемый эффект трудно объяснить, воздействием гамма-квантов. Вместе с тем все трудности исчезали, если предположить, что излучение бериллия состоит из частиц с массой, равной единице (т. е. массе протона), но не имеющих электрического заряда. Так были открыты нейтроны, существование которых Резерфорд предсказывал еще в 1920 г. Результаты экспериментов, проведенных Чедвиком в Кавендишской лаборатории в Кембридже, были опубликованы им в 1932 г.
Открытие нейтрона стало поворотным пунктом в истории современной ядерной физики. Теоретикам пришлось отказаться от модели атомного ядра, состоящего из протонов и электронов, связанных электромагнитными силами. Это представление, господствовавшее почти полвека, уступило место новой концепции; новые (нейтральные) частицы требовали поиска новых сил взаимодействия. За открытие нейтрона Джеймс Чедвик был удостоен в 1935 г. Нобелевской премии по физике.
Сразу же после открытия нейтрона возник вопрос, какие силы удерживают эту частицу в ядре вместе с протоном. Предлагались модели взаимодействия, основанные на переходах нейтронов в протоны и обратно с испусканием позитронов, электронов и нейтрино. Однако выяснилось, что эта модель, в которой опять-таки все объяснялось электромагнитным взаимодействием, не соответствовала действительности. Решение проблемы оказалось иным.
Японский физик Хидэки Юкава одним из первых понял, что здесь ученые столкнулись с новым видом взаимодействия. В 1935 г. он, развивая идеи И.Е. Тамма и Д.Д. Иваненко об обменном характере ядерных сил, выдвинул гипотезу, описывающую характер взаимодействия между протонами и нейтронами в ядре. Было очевидным, что новое взаимодействие значительно сильнее электромагнитного. Его сущность определила и само его название — сильное взаимодействие.
Читать дальше