С.этого интересного открытия начались исследования, которые в конце концов позволили распределять (подобно, донорам крови) доноров тканей и органов по группам, что значительно повысило возможности трансплантологов. В новое направление науки включились десятки известных ученых всего мира. Выяснилось, в частности, что система HLA является аналогом системы Н-2 у мышей. Это еще один пример того, как чистая наука приносит важный практический результат. «Мышиная модель» способствовала быстрому развитию иммуногенетики человека, и результаты лабораторных исследований нашли вскоре широкое практическое применение.
Исследованием систем генов, играющих столь важную роль в регулировании иммунных процессов, в 60— 70-е годы занялась также большая группа ученых, возглавляемая Барухом Бенацеррафом, профессором патологии Гарвардского университета. Этот ученый, родившийся в Каракасе (Венесуэла), был избран в июле 1980 г. президентом Международного союза иммунологов.
В конце 60-х годов Бенацерраф с сотрудниками изучал генетический механизм иммунной реакции организма. То, что эта реакция обусловлена действием генетических факторов, ученым было известно давно, однако лишь в 60-е годы благодаря успехам генетиков, которые усовершенствовали метод работы с чистыми линиями, и иммунохимиков, синтезировавших белковые антигены, эта область иммунологии получила дальнейшее развитие. Строго контролируя условия, исследователи могли теперь изучать иммунные реакции конкретных генов, выяснилось, что каждый организм имеет уникальный набор генов, входящих в систему гистосовместимости, чем и определяется его строго индивидуальная реакция на инородные вещества. Это открытие имело важное практическое значение, ибо ученые поняли, что при профилактической вакцинации необходимо учитывать индивидуальную специфику организма.
Впоследствии Бенацерраф и возглавляемый им коллектив иммунологов уточнили роль систем Н-2 и HLA в развитии иммунной реакции, подтвердилось, что они регулируют иммунологические процессы в организме, отторжение трансплантатов, автоиммунные расстройства, реакцию на вакцинацию, возникновение раковых патологий и иммунодефицитных состояний.
Многие серьезные заболевания, с которыми медицина пока еще не в состоянии справиться, имеют иммунную основу. Развитие иммуногенетики дает возможность путем сочетания методов генной и иммунной инженерии воздействовать на иммунитет в самой его основе, заменяя дефектные гены и создавая новые популяции защитных клеток, способных бороться с пагубным для организма воздействием. Эти возможности были заложены работами Джорджа Снелла, Жана Доссе и Баруха Бенацеррафа — лауреатов Нобелевской премии по физиологии и медицине за 1980 г.
В 1955 г. датский исследователь, родившийся в Англии, Нильс Ерне разработал новый теоретический метод, который обеспечивал огромное разнообразие антител, защищающих организм от инородных клеток и молекул. В своей так называемой клонально-селекционной теории (селекционной гипотезе образования антител) он постулировал, что каждая иммунная клетка (лимфоцит) несет информацию, необходимую для образования специфического антитела. В процессе иммунной реакции клетки, производящие соответствующие антитела, усиленно делятся, предохраняя тем самым организм от проникновения чужеродных элементов.
Из этих открытий следовало, что если в клеточной культуре вырастить «потомство» лимфоцита, то из него можно выделить специфические вещества, оказывающие сильное терапевтическое воздействие. Было только не. понятно, как реализовать все это на практике.
Лимфоциты весьма чувствительны и быстро погибают в искусственной среде. Но с другой стороны, хорошо известно, что раковые клетки способны размножаться на протяжении неограниченно долгого времени. Это обстоятельство и было использовано аргентинским иммунологом Цезарем Мильштейном, работавшим в Лаборатории молекулярной биологии в Кембридже, и молодым западногерманским исследователем Георгом Келером, также приехавшим в Кембридж. Они смогли добиться слияния лимфоцитов со злокачественными клетками миеломы. Полученные гибридные клетки (или, как их стали называть, гибридомы) могли производить антитела, и в то же время их в изобилии можно было выращивать в искусственной среде.
Это экспериментальное достижение произвело подлинную сенсацию среди иммунологов. Вернулась надежда на возможность терапии посредством строго специфических антител, которые, подобно «магическим пулям», поражают врагов организма. Правда, прошедшее десятилетие несколько охладило энтузиазм, но вместе с тем обнаружилось, что метод получения антител с помощью гибридов (метод гибридом) открывает огромные возможности для диагностики. Как заметил советский иммунолог Г.И. Абелев, этот метод служит своего рода «иммунологическим микроскопом».
Читать дальше