В 1972 г. Даниэль Натане стал директором, отдела микробиологии медицинского факультета университета Джона. Гопкинса, где. работал ассистентом Гамильтон Смит. Вместе со своими сотрудниками Натане разработал эффективный метод выделения в чистом виде фрагментов ДНК с помощью, электрофореза. Таким, образом, ученые уже имели «молекулярные ножницы», вырезающие нужные фрагменты из ДНК, и владели методами выделения этих фрагментов. Осталось найти «транспортное, средство», которое позволило бы вводить выделенные гены в клетку.
Такие механизмы, в сущности, были давно известны ученым. Еще в 40—50-х годах, когда закладывались основы бактериальной генетики, было открыто явление трансдукции (переноса генов из одной клетки в другую с помощью вируса). Ген прикрепляется к ДНК вируса, которая впоследствии становится частью хромосомы бактерии. Разумеется, этот механизм действовал лишь у вирусов, которые не уничтожают клетку сразу. Другой механизм связан с процессом полового размножения бактерий. Клетки нормально обмениваются генетическим материалом с помощью плазмид (небольших частиц, содержащих фрагменты ДНК). Если ввести в плазмиды какой-либо ген, то они превращаются в отличное «транспортное средство», переносящее ген в бактерии.
Создание и развитие генной инженерии, как и любой новой области науки, было результатом деятельности большого числа ученых и групп исследователей. Но всегда среди многих можно выделить лиц, внесших решающий вклад. Вернер Арбер открыл рестриктазы, Гамильтон Смит выделил первые рестриктазы, а Даниэль Натане создал метод выделения генов и провел с помощью рестриктаз полное исследование вирусного генома. За свои замечательные научные достижения трое названных исследователей были удостоены в 1978 г. Нобелевской премии по физиологии и медицине.
В числе основоположников генной инженерии стоит и имя Пола Берга из Станфордского университета. В 1972 г. путем химического воздействия он сумел соединить ДНК двух вирусов, получив молекулярный гибрид. Эта методика оказалась очень полезной, так как дала возможность присоединять различные гены к вирусу, используя его как транспортное средство для проникновения в клетку. Таким образом, возникли предпосылки для создания генных «библиотек». Гены, выделенные из самых различных организмов, могут вводиться в клетки бактерий с помощью фагов или плазмид и размножаться вместе с бактериями. Эти бактерии служат фондом генной «библиотеки», и при необходимости из них всегда можно извлечь ген, представляющий интерес для исследователя. Кроме того, гены, перенесенные в необычную среду, начинают действовать по-иному, и это создает возможность для изучения механизма их регуляции.
Важной проблемой в молекулярной биологии является определение нуклеотидной последовательности в ДНК. Больших успехов в этой области добился Фредерик Сенгер, опытный экспериментатор, который в середине 50-х годов разработал метод определения аминокислотной последовательности белков и в 1958 г. получил Нобелевскую премию по химии за определение структуры инсулина.
В 1965 г. Сенгер начинает в Кембридже (где он постоянно работал) исследование структуры нуклеиновых кислот, в частности первичной структуры (нуклеотидной последовательности). С этой целью использовались меченые атомы, что позволило работать с ничтожно малым количеством экспериментального материала — порядка микрограммов. Исследовалась реакция синтезирования второй комплементарной цепи, меченной радиоактивным фосфором, на матрице однониточной ДНК. Она осуществлялась в ходе четырех параллельно идущих опытов, в которых у каждого нуклеотида прерывался рост цепи. Полученные фрагменты ДНК разделяются с помощью электрофореза, что дает возможность точно определить длину конечного полинуклеотида. В каждом из четырех опытов реакция останавливалась соответственно на аденине, гуанине, цитозине и тимине. Зная фрагменты и число нуклеотидов в них, можно точно определить место каждого из этих оснований в молекуле ДНК.
Этот метод Сенгер с сотрудниками применили в 1977 г. для определения положения 16 500 нуклеотидов в ДНК митохондрий человека. Эти клеточные субстанции, генераторы энергии клетки, имеют собственную ДНК и относительную автономию. Предполагается, что они, как и хлоропласта, произошли от симбиотических микроорганизмов, приспособившихся к жизни в клетке. В группе, руководимой Сенгером, были разработаны и другие методы исследования нуклеиновых кислот, с помощью которых еще в 1967 г. удалось определить нуклеотидную последовательность одного из видов РНК, состоящей из 120 нуклеотидов, а в 1977 г. на двух страницах английского журнала Nature был напечатан петитом список всех 5375 нуклеотидов ДНК фага ФХ174: химическая формула бактериофага.
Читать дальше