То, что прошлое не имеет определенности, означает, что наши наблюдения за системой, выполняемые в настоящем, влияют на ее прошлое. Это довольно эффектно демонстрирует эксперимент, который предложил американский физик Джон Уилер (1911–2008), — так называемый эксперимент с отложенным выбором. В общих чертах этот эксперимент напоминает только что рассмотренный нами эксперимент с двухщелевой преградой, в котором вы можете наблюдать траекторию движения частицы, за исключением того, что в эксперименте с отложенным выбором вы откладываете свое решение о том, проводить наблюдение за траекторией или нет, до самого последнего мгновения, предшествующего столкновению частицы с экраном.
Эксперимент с отложенным выбором приводит к данным, идентичным тем, что получаются в случае, когда мы решаем наблюдать (или не наблюдать) для получения информации «который путь», следя за самими щелями. Но при отложенном выборе траектория каждой частицы, то есть ее прошлое, определяется намного позже того, как частица пройдет сквозь щели и предположительно уже «решила», проходить ли ей только через одну щель — что не приведет к интерференции — или через обе — что создаст интерференцию.
Уилер даже рассмотрел космическую версию этого эксперимента, в которой частицами являются фотоны, испускаемые мощными квазарами, находящимися на расстоянии в миллиарды световых лет. Такой свет мог бы разделиться на две траектории и снова сфокусироваться в направлении к Земле так называемым гравитационным линзированием с помощью промежуточной галактики. Хотя подобный эксперимент находится за пределами возможностей нынешних технологий, если бы мы смогли собрать достаточно фотонов от такого света, они должны были бы сложиться в интерференционный узор. Однако если мы установим измеряющее устройство для получения информации «который путь» неподалеку от экрана, интерференционная картина не возникнет. Выбор — двигаться по одной или по двум траекториям — в этом случае был бы сделан миллиарды лет назад, еще до того как образовалась Земля, а возможно, даже и само Солнце. И все же наши наблюдения в лаборатории окажут влияние на этот выбор.
В этой главе мы проиллюстрировали использование квантовой физикой эксперимента с двухщелевой преградой. В следующей главе мы рассмотрим фейнмановскую формулировку квантовой механики на примере всей Вселенной. Мы увидим, что, подобно частице, Вселенная имеет не единственную историю, а все возможные истории, каждую со своей собственной вероятностью, а наши наблюдения ее текущего состояния влияют на ее прошлое и определяют различные истории Вселенной точно так же, как наблюдения за частицами в двухщелевом эксперименте влияют на прошлое частиц. Этот анализ покажет, как в результате Большого взрыва возникли законы природы в нашей Вселенной. Но прежде чем рассматривать, как возникают законы, мы немного поговорим о том, что же такое законы, а также о тех загадках, которые они влекут за собой.
Самое непостижимое во Вселенной то, что она постижима.
Альберт Эйнштейн
Вселенная постижима, потому что ею управляют научные законы, то есть ее поведение можно смоделировать. Но каковы эти законы и модели? Первой силой (или фундаментальным взаимодействием в природе), описанной на языке математики, была гравитация. Закон всемирного тяготения Ньютона, опубликованный в 1687 году, гласит, что всякий объект во Вселенной притягивает любой другой объект с силой, пропорциональной его массе. Это произвело огромное впечатление на интеллектуальную среду той эпохи, поскольку впервые показало, что по крайней мере один аспект Вселенной может быть точно смоделирован. Кроме того, данный закон давал математический аппарат, позволяющий сделать это. Мысль, что существуют законы природы, породила проблемы, подобные тем, за которые около пятидесяти лет до этого Галилей был обвинен в ереси. Например, в Библии повествуется о том, как Иисус Навин умолил Бога остановить движение солнца и луны, чтобы продлить светлое время, и тем самым дать ему возможность завершить битву с амореями в Ханаане. Согласно книге Иисуса Навина, солнце остановилось почти на сутки. Сегодня мы знаем, что это означает остановку вращения Земли. Но если бы Земля остановилась, то, согласно законам Ньютона, все, не закрепленное на ней, продолжило бы движение с прежней скоростью (1100 миль в час на экваторе), — это была бы высокая цена за отложенный закат. Но Ньютона все это не волновало, поскольку, как мы упоминали, он считал, что Бог может вмешиваться и вмешивается в работу Вселенной.
Читать дальше
Конец ознакомительного отрывка
Купить книгу