20 апреля 2004 года НАСА запустило на орбиту спутник Gravity Probe В, чтобы измерить искажение пространства-времени вблизи массы Земли и эффект увлечения инерциальных систем отсчета. В ньютоновском пространстве сфера, вращающаяся в 600 км от земной поверхности, сохранила бы ориентацию своей оси в одном направлении. Однако эйнштейнова четырехмерная пространственная ткань сообщила бы сфере искривления Земли, и ось потихоньку начала бы смещаться. Датчик Gravity Probe В в течение года фиксировал изменение осей вращения четырех практически идеальных кварцевых сфер, сориентированных в начале опыта на звезду в созвездии Пегаса.
Чувствительность датчиков позволяла обнаружить изменения в угле наклона оси, сравнимые с толщиной волоса, если смотреть на него с расстояния 32 км. Окончательные результаты были опубликованы в мае 2011 года, когда руководитель проекта и сотрудник Стэнфордского университета Фрэнсис Эверитт сделал следующее заявление: «Мы провели этот важнейший опыт, чтобы подвергнуть испытанию модель мира, созданную Эйнштейном. И Эйнштейн прошел это испытание».
Миссией спутника Gravity Probe В, запущенного на орбиту в 2004 году, было обнаружение воздействия массы и вращения нашей планеты на пространство-время. Спутник был оборудован четырьмя гироскопами, ориентированными в качестве контрольной точки на звезду IM Пегаса. Изменения в положении осей гироскопов доказали экспериментальную гипотезу.
Столетие спустя после открытия теория относительности вошла, наконец, в нашу жизнь. GPS-устройства определяют наше местонахождение, обрабатывая данные со спутников. Для того чтобы информация была точной, часы на орбите и часы на Земле должны быть синхронизованы. Если мы хотим уточнить наше положение в пределах 30 м, нужно помнить о двух релятивистских поправках. Во-первых, необходимо учесть запаздывание сигнала (7 микросекунд), вызванное скоростью спутника и описанное специальной теорией относительности, а во-вторых, его опережение (45 микросекунд), описанное общей теорией относительности и вызванное тем, что время течет тем быстрее, чем меньше плотность гравитационного поля (обратный эффект запаздывания, вызывающий сдвиг к красному спектру). Гравитация на высоте 20 000 км, на спутниковой орбите, слабее, чем на поверхности Земли. В новых системах позиционирования эти фазовые сдвиги нивелируются.
Главный удар по теории относительности был нанесен в сентябре 2011 года заявлением о предполагаемом выходе за пределы скорости света. Нейтрино, генерируемые в Большом адронном коллайдере, пронзили земную кору, достигнув подземных детекторов под самым высоким пиком Апеннинских гор – Гран-Сассо, в 100 км от Рима. После соответствующих расчетов экспериментаторы пришли к выводу, что нейтрино пришли на 60 наносекунд раньше времени. Эта новость была сообщена с большой осторожностью и воспринята с огромным скепсисом – особенно после того, как были обнаружены неполадки в механизме, синхронизирующем хронометры ЦЕРН и Гран-Сассо. В июне 2012 года ученые подтвердили, что опережение частиц было ошибкой измерения.
Но даже если предположить, что нейтрино пробили брешь в старой физике, теория относительности все еще сильна. Серия других экспериментов подтвердила базовые принципы теории с точностью, которую можно было бы назвать миллиметровой даже говоря о расстоянии от Земли до Луны. Идеи теории относительности вошли в плоть и кровь науки, и их следы останутся в ней навсегда. Точно так же, как ньютоновская физика находит свое применение, когда речь идет о скоростях, малых по сравнению со скоростью света, и о слабых гравитационных полях, физика Эйнштейна останется на отвоеванной территории.
Наука – словно шлифовальный станок: с каждым годом она добирается до все более точного описания мира. В идеях Ньютона угадывается сегодняшняя физика, а квантовые и релятивистские теории позволяют рассмотреть все больше любопытных и неожиданных деталей. Кто знает, каким будет лицо физики через несколько десятков лет? Однако, вне всяких сомнений, эйнштейновские время, пространство и гравитация все так же будут озарены светом новых открытий.
Список рекомендуемой литературы
Bernstein, J., Einstein: el hombre у su obra, Madrid, McGraw-Hill, 1992.
Born, M. y Born, H., Ciencia у conciencia en la era atomica, Madrid, Alianza, 1971.
Einstein, A., La gran ilusion: las grandes obras de Albert Einstein, Hawking, Stephen (ed.), Barcelona, Critica, 2010.
Читать дальше