Минковский скоропостижно скончался от аппендицита, оставив свою работу незавершенной. Гильберт тяжело переживал его смерть. Он заметно изменил свое отношение к физике и после смерти товарища словно продолжал его мысли: «Рассуждая письменно, физики легко пропускают важные логические ходы […], в то время как ключ к пониманию физических процессов часто находится у математиков». Или, как говорил Гильберт в неформальной обстановке, «физика становится слишком сложной, чтобы оставить ее физикам».
Сознательно или нет, математик решил осуществить программу своего старого друга. Одним из его основных достижений была аксиоматизация геометрии, а сейчас он собрался провести ту же операцию с физикой. Гильберт провозгласил лозунг: «Мы провели реформу математики, теперь мы должны реформировать физику, а потом придет очередь химии». Именно этим он занимался, встретив Эйнштейна, работавшего в то время над общей теорией относительности.
Почти год прошел с начала Первой мировой войны, которая была еще далека от развязки. В апреле 1915 года немцы впервые применили химическое оружие, распылив хлор около реки Ипр. Окопы накрыл желтовато-зеленый туман. В развитии теории относительности также намечалась битва, хотя и менее кровопролитная. В конце июня Эйнштейн принял приглашение Гильберта и поехал в Гёттинген, чтобы в цикле из шести лекций рассказать об общей теории относительности. Остановился он в доме у Гильберта, и оба светила провели немало оживленных научных бесед.
Ученые произвели друг на друга великолепное впечатление. «К моей большой радости, я полностью преуспел в том, чтобы убедить Гильберта и Кляйна», – поздравлял себя Эйнштейн. Гильберт также не скрывал удовлетворения: «Летом у нас побывали Зоммерфельд, Борн и Эйнштейн. Лекции последнего о теории гравитации стали особым событием».
Эйнштейну, несомненно, удалось соблазнить гёттингенских математиков своим геометрическим подходом к изучению сил тяготения. Ученый при этом не догадывался, что математики, не сговариваясь, посчитали, что он находится на распутье – в той точке, где физика становится слишком сложной, чтобы оставить ее физикам. Великий патриарх гёттингенской школы, Феликс Кляйн, сетовал: «В работе Эйнштейна есть несовершенства, которые не наносят вреда его значительным идеям, но, тем не менее, скрывают их». А Гильберт позволял себе шутки по этому поводу: «Любой гёттингенский юноша понимает в четырехмерной геометрии больше, чем Эйнштейн».
В ноябре карты были раскрыты. Толчком к этому стало признание Эйнштейна в том, что он «потерял всякую веру» в уравнения поля, которые защищал последние три года. Ученый решил вернуться к рассуждениям, которые он оставил в стороне еще в 1912 году как противоречащие ньютоновской физике. Известие, что Гильберт обнаружил ошибки в его работе и начал собственную атаку на уравнения поля, было как снег на голову. Гильберт значительно превосходил Эйнштейна в математических познаниях, и это казалось определяющим фактором для решения задачи. Однако Эйнштейн обладал немыслимым чутьем в физике.
Он ускорил работу и погрузился в бездну уравнений, которые без конца исправлял, вымарывал и писал заново, рассматривая все возможные варианты. Ученый отказался практически от любой деятельности, которая могла его отвлечь, он не отличал дня от ночи и иногда даже забывал поесть. Это упорство наконец дало результаты. Туман вокруг математического обоснования теории почти развеялся… 14 ноября в почтовый ящик Эйнштейна положили письмо со штемпелем Гёттингена – от Гильберта. Математик хвастался своим успехом:
«На самом деле до того как предложить аксиоматическое решение твоей исключительной задачи, мне бы хотелось подумать о каком-нибудь его применении, важном для физиков, вроде верного отношения между физическими константами».
Переписка между Гильбертом и Эйнштейном стала настоящим поединком предложений и предупреждений. 18 ноября Эйнштейн наконец вышел в свет. Последняя версия его теории объясняла аномальное отклонение прецессии [2 Прецессия – явление, при котором момент импульса тела меняет свое направление в пространстве под действием момента внешней силы. – Примеч. ред.] орбиты Меркурия, описанное французским математиком Урбеном Леверье в 1859 году и оставшееся без объяснения в рамках ньютоновской физики. Также теория предсказывала искривление траектории луча света в поле тяготения. Уравнения Эйнштейна сводились к ньютоновским в гравитационных полях малой интенсивности – это открытие на несколько дней привело его в состояние эйфории.
Читать дальше