Образование воды из соединений водорода и кислорода при возникновении электрической искры впервые было отмечено в 1783 г. английским физиком Г. Кавендишом. В последующем известны много исследований по уточнению химического состава и физических свойств воды. То, что вода состоит из водорода и кислорода, показали в 1785 г. французский физик А. Лавуазье, а в 1805 г. — немецкий естествоиспытатель А. Гумбольдт и французский исследователь Гей-Люссак. Они определили состав воды: два объема водорода и один — кислорода молекулярный вес 18.
К настоящему времени установлено существование воды с молекулярным весом 19, 20, 21, 22. Такие молекулы воды состоят из более тяжелых атомов водорода и кислорода, т. е. водорода, имеющего атомный вес более 1, и кислорода — более 16. Оказалось, что в природе встречается тяжелый изотоп водорода с массой 2, который назван дейтерием (D) и еще более тяжелый изотоп, с массой 3, получивший название тритий (Т). У кислорода выявлены три изотопа с атомным весом 16, 17 и 18.
Соединение из двух атомов дейтерия и одного кислорода назвали тяжелой водой (D 2O), а соединение двух атомов трития с одним атомом кислорода — сверхтяжелой водой (Т 2O). В природных условиях 99,73 % составляет обычная вода с молекулярным составом Н 2 1O 16, 0,04 % — тяжелокислородная вода с составом Н 2 1O 17и 0,02 % — H 2 1O 18. Доля тяжелой воды (D 2O) и сверхтяжелой воды (Т 2O) в природных водах чрезвычайно мала.
Тяжелая вода отличается от обычной как по физическим свойствам, так и по физиологическим воздействиям на организм. Испаряется она медленнее, чем обычная вода. Возможно, это является причиной большего содержания тяжелой воды во внутренних замкнутых водоемах южных широт.
Атмосферная вода в процессе круговорота обогащается дейтерием благодаря диссипации протонов в космическом пространстве. Именно благодаря этому дождевая вода более богата тяжелым водородом. Тритий может поступать в атмосферу в результате космических процессов, а также обогащать земную воду, правда, в очень небольших количествах, сверхтяжелой водой.
Любопытна структура внутреннего строения молекулы воды. В центре молекулы обычной воды располагается атом кислорода, а на некотором расстоянии — два атома водорода. Атомы водорода по отношению к атому кислорода находятся не по прямой линии, проведенной через центр атома кислорода, а под углом, равным 105°. Связь между атомами водорода и кислорода в молекуле воды осуществляется электронами.
Поскольку ядра атомов водорода и кислорода расположены несимметрично, молекулы воды имеют форму тетраэдра, в вершинах которого имеются четыре полюса зарядов.
Каждая молекула воды способна соединиться с четырьмя ближайшими к ней молекулами. При этом положительно заряженный полюс одной молекулы притягивает отрицательно заряженный полюс другой. Таким образом могут образоваться группировки молекул, состоящих из двух, трех и более молекул. В зависимости от температуры и давления среды, в которой находится вода, расстояния между молекулами могут увеличиваться или сокращаться. Это делает структуру воды исключительно изменчивой. Повышение температуры вызывает увеличение скорости молекул и расстояния между ними. Максимальная плотность воды достигается при температуре плюс 4 °C.
Вода, как все вещества в природе, при охлаждении от плюс 100° до плюс 4° уменьшается в объеме. При дальнейшем охлаждении воды до 0° ее объем увеличивается. Такое свойство типично только для воды. Ученые объясняют это тем, что при понижении температуры от 4° до 0° происходит перестройка ее внутренней структуры, жидкость превращается в лед, т. е. в кристалл, где молекулы образуют своеобразную решетку.
При замерзании объем воды возрастает примерно на 11 %. В связи с этим замерзание ее в замкнутом пространстве приводит к возникновению избыточного давления, достигающего, как показывают наблюдения, 2,5 тыс. кгс/см 2. Этим объясняют разрушительную силу замерзающей воды в замкнутых пустотах, трещинах горных пород, откалывающую подчас многотонные глыбы и дробящую их в дальнейшем на мелкие осколки. С увеличением давления температура замерзания воды уменьшается. Эта зависимость для воды аномальна: у других веществ, наоборот, с ростом давления температура замерзания повышается. Подобная аномалия воды очень важна. Даже без учета растворенных в ней солей вода на больших глубинах в океане не замерзает, причем при температуре минус 3 °C этого не случается даже на глубине около 4 тыс. м.
Читать дальше