Эддингтон сразу понял, что это открытие может объяснить столь длительное свечение звезд: «Если такое возможно в Кавендишской лаборатории, то и подавно на Солнце». В те времена ученые чрезвычайно мало знали о строении атомного ядра, но понимали, что для слияния протонов температура внутри звезды должны быть чрезвычайно высокой, чтобы придать частицам энергию, достаточную для преодоления огромного электростатического отталкивания. Правда, некоторые астрофизики утверждали, что температура внутри звезд не может быть столь высока, на что Эддингтон яростно отвечал: «Тогда идите и найдите место погорячее».
Именно тогда он начал разрабатывать свою знаменитую теорию, впоследствии названную стандартной моделью Эддингтона.
Он стремился описать происходящее внутри звезд исключительно математическими методами. В 1917 году Эддингтон впервые предложил свою теорию, но в применении только к гигантским звездам с настолько низкой плотностью, что к ним можно было применять законы для идеального газа. Температура внутри звезд достигает десятков миллионов градусов Кельвина, а значит, звезда излучает в рентгеновском диапазоне и испускает высокоэнергетичные кванты. При взаимодействии с атомами звезд рентгеновские лучи отрывают от них электроны, начиная с внешних орбит, где электроны слабее связаны с ядром. Этот процесс ослабляет энергию излучения во внутренней части звезды. Оторванные («свободные») электроны некоторое время хаотически движутся, пока их не захватят другие атомы, из которых электроны снова выбиваются излучением. Это приводит к дальнейшему ослаблению испускаемой энергии внутри звезды.
Вот как это описывает Эддингтон: «Внутри звезды среди атомов и электронов творится полная сумятица. Представьте себе такую картину: со скоростью 80 км в секунду летают оборванные атомы, на которых, как лохмотья после драки, болтаются оставшиеся электроны. Вырванные из них электроны носятся в сто раз быстрее в поисках нового пристанища. Смотрите! — вот электрон приближается к атомному ядру, но с большой скоростью пролетает мимо него по крутой кривой. При следующей встрече с атомом он оказывается ближе, захватывается и прилипает к нему, теряя свободу. Но только на мгновение. Едва атом обретает новую оболочку, как на него налетает новый квант света. С огромной скоростью электрон опять вырывается на свободу в поисках новых приключений».
Для определения температуры звезды и интенсивности ее излучения Эддингтон должен был найти среднее число свободных электронов, приходящееся на атом, которое в астрофизике называют «средним молекулярным весом». В то время астрономы полагали, что звезды состоят из тех же элементов, что и Земля, то есть почти не содержат водорода и гелия и состоят из кислорода, железа, натрия, кремния, калия, магния, алюминия и кадмия [19] Астрофизики тогда не задумывались о происхождении более тяжелых элементов и только предполагали, что они были частью межзвездной пыли, из которой образовались звезды.
. Учитывая это предположение, а также тот факт, что не все атомы теряют свои электроны, Эддингтон определил средний молекулярный вес равным 2,1.
Затем он предположил, что химический состав одинаков для всех звезд, а значит, одинаков и их молекулярный вес. Следующий, подлежащий решению вопрос был о непрозрачности звезды, то есть каким образом химические элементы не дают излучению выйти наружу. Если излучение будет свободно испускаться, то звезда очень быстро остынет, но если звезда непрозрачна для излучения, то по мере его накопления она может взорваться. Эддингтон начал с того, что использовал математическую формулу для непрозрачности и вычислил для нее теперь уже «физическую величину». Затем он преобразовал эту формулу с учетом условий внутри звезды и получил теперь уже «астрономическую величину» непрозрачности. При подстановке среднего молекулярного веса 2,1 им была рассчитана «астрономическая величина», которая подходила для любой звезды [20] Эддингтон использовал данные для более яркой из двух звезд, составляющих двойную систему Капелла-Капелла А, расположенную на расстоянии 10 14 километров от Земли в созвездии Возничего. Согласно Эддингтону, данные наблюдений для Капеллы были «необычно полными» и позволили чрезвычайно точно определить ее массу, температуру поверхности, радиус и яркость.
.
Из этих расчетов Эддингтон сделал важный вывод о том, как соотносятся массы звезд с их яркостью: чем больше масса гигантской звезды, тем она ярче. Он назвал это соотношением масса — светимость. Удивительно, что его вывод оказался правильным не только для звезд-гигантов с низкой плотностью, описываемых законами идеального газа, но и для гораздо более плотных звезд-карликов. Таким образом, измерение светимости звезды астрономическими методами позволяло рассчитать ее массу. Астрономы-теоретики подтвердили своими расчетами результаты Эддингтона и объяснили, почему более массивные звезды ярче менее массивных и почему, например, так необычайно ярок Сириус. И лишь поведение белых карликов эта теория описать не могла.
Читать дальше