В 1978 году Рассел Халс и Джозеф Тейлор обнаружили косвенное подтверждение существования гравитационных волн при наблюдении характеристик двойного пульсара PSR 1913 +16, состоящего из двух нейтронных звезд. Для анализа такой системы следует использовать общую теорию относительности. Халс и Тейлор с помощью точных расчетов обнаружили, что скорость убывания периода орбитального движения связана с испусканием гравитационных волн. В 1993 году они получили Нобелевскую премию по физике «за обнаружение пульсара нового типа, открывшего новые возможности в изучении гравитации».
Сверхгиганты, подобные HDE 226868 и Бетельгейзе, — редкие звезды, которые в тысячу раз больше, чем Солнце, и в сотни тысяч раз ярче его. Если бы на месте Солнца находился сверхгигант, то орбита Земли была бы внутри звезды.
С помощью джетов энергия распространяется из области вокруг сверхмассивной черной дыры и передается лепесткам. Каким образом черные дыры производят эти струи? Одной из возможностей является скопление частиц газа во внутренней части аккреционного диска с образованием такого высокого давления, что часть материи выбрасывается, для предотвращения взрыва. Двигаясь по пути наименьшего сопротивления, частицы вылетают под прямым углом к диску.
В своей речи в Йерксе Фаулер посетовал на то, что Фред Хойл не получил Нобелевскую премию, хотя внес большой вклад в их ранние совместные работы. Скорее всего, Хойл был исключен по двум причинам. Во-первых, он продолжал поддерживать стационарную модель Вселенной, несмотря на убедительные доказательства теории Большого взрыва, а во-вторых, везде и всюду ругал Нобелевский комитет за то, что Джоселин Белл не получила премию за открытие пульсаров, а награда досталась руководителю ее диссертации Энтони Хьюишу.
Согласно квантовой теории, такого понятия, как пустое пространство, не существует. Космос наполнен бурлящими частицами вещества и антивещества, которые появляются и исчезают, постоянно возникая и аннигилируя. Представьте себе, что где-то вблизи горизонта событий интенсивное гравитационное поле черной дыры порождает частицу и ее античастицу. Во время своего мимолетного существования одна из них проваливается за горизонт событий черной дыры. Другая частица не может объединиться со своим партнером и аннигилировать, а потому улетает в космос. В соответствии с уравнением Эйнштейна E = mc 2, улетающие частицы уносят энергию из черной дыры. То же самое происходит, когда создаются два кванта света и один из них улетает. Хокинг сделал предположение, что черные дыры будут с течением времени испаряться из-за подобной «утечки» энергии. Улетающие частицы называются «излучением Хокинга». Время испарения составляет более 10 67лет — невероятно большое по сравнению с возрастом Вселенной — 13 млрд (10 10) лет, так что черные дыры, которые образуются из коллапсировавших звезд, не могут испариться. Но легкие черные дыры с массами в миллиард миллиардов (10 18) раз меньше, чем масса Солнца (10 33грамма), имеют время испарения, сравнимое с возрастом Вселенной. Эти «мини»-черные дыры могли образоваться в момент Большого взрыва, когда Вселенная была сверхплотным, невероятно горячим, кипящим супом, в котором непрерывно возникали квантовые флуктуации. Некоторые из этих дыр должны быть на грани испарения из-за излучения Хокинга, состоящего из элементарных частиц и гамма-лучей, которые в принципе могут быть обнаружены орбитальными обсерваториями. Однако пока ничего подобного не наблюдалось.
E — это функция Эрнста, величина, используемая в математическом аппарате общей теории относительности.
Орбитальная обсерватория, создание которой было запланировано еще в 1977 году, первоначально называлась Advanced X-ray Astrophysics Facility (AXAF). Новое название было выбрано в честь Чандры. Рентгеновская обсерватория «Чандра» находится на вытянутой эллиптической орбите: ее ближайшая точка от Земли — 9600 километров, а период вращения — 64 часа. Благодаря вытянутости орбиты чувствительные рентгеновские детекторы обсерватории удалены от помех, создаваемых поясами радиации Земли, что позволяет проводить непрерывные наблюдения в течение 55 часов при каждом обороте. Длина обсерватории — 13,5 метров, ширина с развернутыми солнечными панелями — 19,2 метра и вес — более 4 тонн. Сердцем обсерватории является рентгеновский телескоп, собранный из тщательно отполированных зеркал весом около тонны. Зеркала с большой точностью фокусируют рентгеновские лучи в камеру с высоким разрешением. Космический телескоп «Хаббл» и рентгеновская обсерватория «Чандра» часто дополняют друг друга. Телескоп «Хаббл» работает в ближнем инфракрасном, видимом и ультрафиолетовом диапазонах, а «Чандра» — в рентгеновском диапазоне. Чтобы получить представление о полном спектре излучения, «Хаббл» и «Чандра» объединяют свои данные с данными радиотелескопа-интерферометра Very Large Array («Очень большой телескоп»), который представляет собой систему из двадцати семи радиотелескопов, расположенных в пустыне в штате Нью-Мексико. «Хаббл», первая большая обсерватория, была выведена на орбиту на космическом корабле «Дискавери» в 1990 году. Следующей была обсерватория «Комптон» (Compton Gamma Ray Observatory), выведенная на орбиту кораблем «Атлантис» в 1991 году. Космический телескоп «Спицер», работающий в инфракрасном диапазоне, был запущен 25 августа 2003 года. Рентгеновская обсерватория «Чандра» часто работает в связке с обсерваторией «ХММ-Ньютон», построенной Европейским космическим агентством (ЕКА) и выведенной на орбиту 10 декабря 1999 года космической ракетой «Ариан-504». Совершенно случайно даты запуска обеих обсерваторий совпали. Задержка с запуском обсерватории «Чандра» возникла из-за аварии «Челленджера» в 1986 году, проблем с зеркалами телескопа «Хаббл» и капризов правительства США, финансирующего программы НАСА. Зная о планах НАСА, агентство ЕКА спроектировало «ХММ-Ньютон» как дополнительное устройство. Регистрирующая аппаратура, созданная для улавливания максимального количества рентгеновских лучей, позволяла проводить более детальные измерения слабых рентгеновских источников, чем обсерватория «Чандра».
Читать дальше