К 1924 году стало ясно, что законы Ньютона не работают также и для сверхмалых размеров (молекулы, атомы и фундаментальные частицы). Чтобы разобраться с этим, Нильс Бор, Вернер Гейзенберг, Эрвин Шрёдингер и другие ученые вывели законы квантовой физики (рис. 3.2). Взяв за основу, что всё вокруг хотя бы в небольшой мере подвержено случайным колебаниям — флуктуациям (об этом в главе 26) и что эти флуктуации могут порождать новые частицы и излучения «из ничего» [16] Современная наука предполагает, что вакуум представляет собой не полное отсутствие каких-либо объектов (частиц, излучений и т. д.), а сложную структуру, и частицы понимаются как некие возбуждения над вакуумом. Прим. науч. ред.
, квантовая физика подарила нам лазеры, ядерную энергию, светодиоды и более глубокое понимание химических процессов.
К 1957 году стало очевидно, что теория относительности и квантовая физика принципиально несовместимы. Их прогнозы коренным образом расходятся в тех случаях, когда велики силы гравитации и квантовые флуктуации [17] Скажем, если энергия световых волн подвержена сильнейшим квантовым флуктуациям, которые настолько значительны, что случайным образом чрезвычайно сильно искривляют пространство и время. Такие искривления выходят за рамки законов относительности Эйнштейна, а их влияние на световые волны лежит за рамками квантовой теории света. Прим. автора.
. Например, когда речь идет о рождении Вселенной в Большом взрыве (см. главу 2); о ядрах черных дыр, подобных Гаргантюа (см. главы 26 и 28); или о путешествиях назад во времени (см. главу 30). «Пылкий брак» [18] Выражение «пылкий брак» пустил в ход мой научный руководитель Джон Уилер, настоящий мастер по части метких названий. Кроме того, Джону принадлежат выражения «черная дыра» и «червоточина», а также фраза: «У черных дыр нет волос» (см. главу 6). Однажды он рассказал мне, что часами лежит в теплой ванне, воспаряя разумом в поисках подходящего слова. Прим. автора.
законов теории относительности и квантовой физики положил начало новым законам квантовой гравитации.
Рис. 3.2. Законы физики, управляющие Вселенной
Мы пока еще не знаем законов квантовой гравитации, но стараниями величайших физиков XXI столетия на этот счет выдвинуты некоторые очень интересные гипотезы, включая теорию суперструн (см. главу 21). Тем не менее квантовая гравитация остается почти неизведанной территорией, и это оставляет простор для научной фантастики — простор, которым Кристофер Нолан так искусно воспользовался в «Интерстеллар» (см. главы 28–31).
Научные истины, обоснованные предположения и домыслы
В «Интерстеллар» задействованы все четыре «континента»: ньютоновская физика, теория относительности, квантовая физика и квантовая гравитация. Часть происходящего в фильме соответствует научным истинам, часть — относится к обоснованным предположениям, а остальное — домыслы.
Чтобы называться истиной, научное знание должно основываться на признанных законах физики (ньютоновских, релятивистских или квантовых) и быть подкреплено достаточным количеством наблюдений.
В этом смысле нейтронные звезды и их магнитные поля, описанные в главе 2, являются научной истиной. Почему? Во-первых, существование нейтронных звезд было предсказано на основании теории относительности и квантовых законов. Во-вторых, астрономы в мельчайших подробностях изучили пульсирующее излучение нейтронных звезд (импульсы света, рентгеновского излучения и радиоволн, описанные в главе 2). Этим наблюдениям, если принять, что пульсары — это вращающиеся нейтронные звезды, найдено полное объяснение с точки зрения теории относительности и квантовых законов; других же объяснений на этот счет найдено не было. В-третьих, было предсказано, что нейтронные звезды образуются при астрономических взрывах (так называемые «вспышки сверхновых»), а пульсары наблюдаются как раз в центре больших расширяющихся газовых облаков — следов таких вспышек. Поэтому у нас, астрофизиков, нет сомнений, что нейтронные звезды действительно существуют и действительно являются источниками наблюдаемых пульсирующих излучений.
Еще один пример научной истины — то, как черная дыра Гаргантюа искривляет лучи света, искажая вид звездного неба (рис. 3.3). Физики называют такое искажение «гравитационным линзированием», поскольку оно изменяет изображение подобно линзе (ну, или кривому зеркалу в парке аттракционов).
Читать дальше
Конец ознакомительного отрывка
Купить книгу