Рис. 24.1. Крупномасштабная структура Вселенной по данным Слоановского цифрового обзора неба (Sloan digital sky survey). Сюда попал «срез» неба раствором 2,5°. Темные сектора — плоскость Галактики, где наблюдения затруднены из-за пыли. Синими точками обозначены эллиптические галактики, красными — остальные. Некоторые массивные и плотные скопления галактик приобретают вид радиально направленных черточек из-за большого разброса скоростей — эти скорости добавляются к измеренному красному смещению
В случае расширяющейся Вселенной неустойчивость работает иначе. Возмущения растут медленнее: не по экспоненте, а линейно — контраст возмущений растет пропорционально масштабному фактору Вселенной. В какой-то момент, когда сгущение становится гравитационно связанным, рост становится нелинейным, причем на стадию нелинейности раньше выходят неоднородности меньшего размера — галактики и скопления галактик. А еще раньше — первые звезды, которые были гигантскими.
Ячеистая структура из стенок и войдов не успела выйти на нелинейную стадию (и уже не выйдет). Как она образовалась? Трудно допустить, что начальные возмущения плотности имели такую хитрую структуру. Ответ прост: крупномасштабная структура является сетью каустик.
Подобное явление можно наблюдать на стене, куда падает свет, отраженный от поверхности воды с легкой беспорядочной рябью. Или в виде аналогичной световой картины на мелком дне. Мы видим подвижную сетку из ярких полос. Именно сеть, а не плавные переливы яркости, подобные самой ряби. Помните, что писал Николай Гумилёв про жирафа:
…И шкуру его украшает волшебный узор,
С которым равняться осмелится только луна,
Дробясь и качаясь на влаге широких озер.
Это в точности про сеть каустик в отражении от ряби, на которую действительно похожа раскраска жирафа. Математически суть «волшебного узора» и крупномасштабной структуры одна и та же, только на воде фокус происходит с углом отражения или преломления, а в случае крупномасштабной структуры — со скоростями и расстояниями — гравитационная неустойчивость в расширяющейся Вселенной работает так, что материя преимущественно накапливается на ближайшей плоскости сгущения.
Еще в 1970 году Я. Б. Зельдович аналитически показал, что положительная флуктуация плотности собирается в плоский блин (термин «блины» прижился надолго). Таким образом, структура из пересекающихся блинов была предсказана еще до своего открытия. Впоследствии путем моделирования с привлечением всё возрастающих вычислительных ресурсов ячеистая структура была воспроизведена во всем ее великолепии.
Рис. 24.2. Результат численного эксперимента «Миллениум», в котором моделировался рост первичных возмущений из-за гравитационной неустойчивости, вплоть до образования галактик и их скоплений. Каждая точка на рисунке — галактика. Яркие пятна — большие скопления галактик. Архив изображений Астрофизического института Общества Макса Планка (МРА) www.mpa-garching.mpg.de/galform/millennium/
Но ни ячеистая структура, ни галактики, ни их скопления не смогли бы возникнуть, если бы ранняя Вселенная была совершенно однородной. Известный закон роста возмущений диктует, что для появления наблюдаемой структуры контраст неоднородностей плотности в эпоху рекомбинации должен быть чуть больше одной тысячной: Вселенная с тех пор расширилась в тысячу раз, и контраст должен был вырасти в тысячу раз, чтобы стать порядка единицы и перейти в нелинейную стадию, образовав галактики.
Эпоха рекомбинации важна здесь потому, что у нас есть «фотография» Вселенной этого возраста (380 тыс. лет) — карта реликтового микроволнового излучения. Значит, мы должны видеть эту затравочную «рябь» на карте реликта! Причем неоднородности температуры реликтового излучения вроде должны быть того же порядка, что и контраст плотности, хотя и не точно такими же: при переводе одного контраста в другой замешан ряд нетривиальных эффектов.
В 1970-1980-х годах сложилась довольно напряженная ситуация. Уже делались измерения реликтового излучения с хорошей чувствительностью. Однако оно выглядело однородным даже тогда, когда уровень чувствительности в одну тысячную был достигнут на наземных радиотелескопах. Тогда наиболее чувствительной установкой был РАТАН-600 на Северном Кавказе (радиотелескоп Академии наук диаметром 600 м). Первый результат, доложенный руководителем научной программы радиотелескопа Юрием Парийским, вызвал недоверие. Получалось, что неоднородностей температуры реликтового излучения нет на уровне 10 -4. А как же тогда образовались галактики!? Кое-где раздавался ропот, что данные неверны. Но вскоре результат об отсутствии неоднородностей с контрастом 10 -4был подтвержден на других радиотелескопах. А предел по данным РАТАН-600 был снижен до уровня 10 -5и даже меньше. Это заставило изрядно поволноваться космологов — вырисовывался самый настоящий кризис. Почва уходила из-под ног: мы видим галактики и их скопления, точно знаем, как эволюционируют неоднородности, но не видим того, из чего они должны развиваться.
Читать дальше
Вот если для примера рассмотреть вращение Луны вокруг Земли. Луна, располагаясь на своей орбите, находится в состоянии равновесия, и при этом ее постоянном движении не совершается работа (работа - это затраченная мощность на протяжении некоторого времени, мощность в свою очередь - это скорость передачи энергии). Наоборот, чтобы сместить Луну с ее орбиты необходимо совершить работу (т.е. затратить мощность). Так и Вселенная, расширяясь, вероятнее всего, находится в состоянии равновесия, которое точно так же, как и равновесие системы Земля-Луна, обеспечивается самой гравитацией. Расширение Вселенной - это ее равновесие, а не затрата мощности при передачи гипотетической темной энергии. И искать темную энергию, которая бы была причиной расширения, - то же самое, что искать скрытый двигатель у Луны, который толкает ее вокруг Земли.