В теории расширяющейся Вселенной есть модель, которая выделяется среди других своими свойствами. Прежде всего в ней считается, что Λ-член равен нулю, т. е. силы отталкивания, введенные Эйнштейном для построения теории статической Вселенной, отсутствуют. Модели без Л-члена делятся на открытые и закрытые. В моделях первого типа плотность вещества во Вселенной мала и силы тяготения не в состоянии полностью затормозить разлет вещества — расширение продолжается неограниченно. В закрытых моделях плотность велика, тяготение сильно и останавливает расширение, заставляя затем Вселенную сжиматься. Закрытые модели обладают замкнутым пространством, в открытых моделях пространство бесконечно и в нем справедлива геометрия Лобачевского. Пограничное значение средней плотности вещества во Вселенной получило название критической. Оно определяется постоянной Хаблла и при H = 500 км/(с∙Мпк) примерно равно 5∙10 -28г/см 3. Модель с критической плотностью выделена и тем, что ее трехмерное пространство характеризуется геометрией Евклида.
В моделях расширяющейся Вселенной раньше галактики были ближе друг к другу, а средняя плотность превышала сегодняшнюю. Значит тогда скорость взаимного удаления галактик оказывалась больше и мы с неизбежностью должны прийти к выводу, что в прошлом был момент бесконечной плотности. (Тогда ни галактик, ни отдельных небесных тел еще не существовало, они возникли позже в ходе расширения Вселенной.) Этот момент формально бесконечной плотности вещества, момент начала расширения, называют космологической сингулярностью. В космологической сингулярности произошел «Большой взрыв», давший начальные скорости разлета вещества Вселенной.
Как давно это было? Оценку дать нетрудно. Если бы две галактики все время удалялись друг от друга с постоянной скоростью, то, поделив расстояние между ними на скорость, мы бы получили время, когда они находились в одном месте. Учтя же закон Хаббла V = Hr, найдем, что этот промежуток времени равен 1/H, независимо от расстояния. Таким образом, если бы скорость удаления каждой галактики не тормозилась тяготением, в момент 1/H они все находились бы в одном месте. На самом же деле в прошлом скорости были большие. Но, если плотность вещества во Вселенной не слишком превышает критическую, а это именно так, торможение по порядку величины сделанную оценку времени не изменит. Подставив значение H, найденное Хабблом, получим, что время 1/H ≈ 2∙10 9лет.
На рубеже двадцатых и тридцатых годов по радиоактивному распаду урана в земной коре был оценен, возраст нашей планеты — от двух до шести миллиардов лет. По относительному количеству изотопов урана 235 и 238 в горных породах Резерфорд также нашел, что возраст Земли около 3 миллиардов лет. В 1930 г. Эддингтон заметил, что время 1/H очень близко к возрасту радиоактивных элементов и сильно отличается от оценок возраста звезд. Тогда возраст звезд считался гораздо большим — около тысячи миллиардов лет. Так следовало из предположения, что источником энергии звезд служит превращение их массы в излучение. Причем принималось, что практически вся масса может перейти в излучение по формуле Эйнштейна Е = mc 2. Дополнительные аргументы в пользу столь долгого существования звезд следовали из сделанных Джинсом оценок времени динамических процессов в звездных системах.
Возникло знаменитое противоречие между двумя шкалами времени. Ведь если звезды существуют сотни миллиардов лет, их возраст должен быть намного больше возраста Вселенной!
Как примирить столь разные оценки?
Космологи пытались «растянуть» время расширения Вселенной, считая, что Λ-член все же не равен нулю. С другой стороны, к концу тридцатых годов стало ясно, что источником излучения звезд служит ядерная энергия. В излучение переходит только малая доля всей массы звезды и поэтому оценку возраста звезд следует уменьшить на два порядка. Тогда же, после более детального исследования галактик, отпали и аргументы Джинса о необычайно длительном существовании звездных систем. Спустя еще некоторое время изменилась и оценка продолжительности расширения Вселенной, так как выяснилось, что значение Я, определенное Хабблом, сильно завышено. В конце концов все явные противоречия между разными «космическими шкалами» исчезли, хотя некоторые вопросы все же остались.
В годы второй мировой войны, оглядываясь на то, что сделал он сам и его коллеги за прошедшее десятилетие, Хаббл так сформулировал взаимоотношения теории и наблюдений: «Математики имеют дело с возможными мирами, с бесконечным числом логически последовательных систем. Наблюдатели исследуют один единственный мир, в котором мы живем. Между ними находится теоретик. Он изучает возможные миры, но только те, которые совместимы с информацией, получаемой наблюдателями. Другими словами, теория пытается выделить минимальное число возможных миров, обязанное включать и существующий обитаемый нами мир. Затем наблюдатель, обладая новой фактической информацией, пытается уменьшить их перечень еще больше. Так и происходит, наблюдения и теория вместе движутся вперед к общей цели — познанию структуры и поведения физической Вселенной».
Читать дальше