Лучистая энергия солнца состоит из видимых лучей — 44 % и невидимых лучей: инфракрасных — 54 % и ультрафиолетовых с длиной волны 280–380 нм — 2 %.
Внутри солнечного излучения можно выделить три диапазона, влияющие на продуктивность и морфогенез растений (возникновение и развитие органов, частей организма): длина волны до 380 нм — ультрафиолетовая (УФ), 380–750 нм — физиологическая или фотосинтетическая радиация (ФАР), 750–4000 нм — инфракрасная ближняя радиация (ИК). В среднем растения на фотосинтез используют 1–1,5 % радиации, теоретически возможно использование до 10 %.
Качество света. Инфракрасные лучи с длиной волны 750–4000 нм в пределах оптимальных температур обеспечивают в растениях нормальное течение всех физиологических процессов, в частности повышают энергию фото синтеза, влияют на морфогенез и фотопериодизм.
Видимые красные (720–620 нм) и оранжевые (620–595 нм) лучи — основной вид энергии, необходимой для фотосинтеза и морфогенеза (формирование органов) зеленых растений, их роста, цветения и плодоношения. Желтые (595–565 нм) и зеленые (565–490 нм) лучи мало влияют на физиологические процессы. Растения в этих лучах растут и развиваются медленно.
Синие (490–440 нм) лучи и фиолетовые (440–380 нм) обусловливают нормальный обмен веществ, стимулируют формирование побегов и листьев. Растения растут и развиваются нормально только при наличии всех видимых лучей. Ультрафиолетовые лучи — невидимые. Наиболее длинные из них (380–315 нм) задерживают вытягивание стебля, повышают содержание в овощах витаминов. В защищенном грунте эти лучи частично задерживаются стеклом. Витамина С в тепличных овощах на 20–30 % меньше, чем в овощах открытого грунта. Рассада, выращенная под стеклом, должна пройти световое закаливание в течение 10–15 дней перед высадкой ее в открытый грунт. Иначе она после высадки пострадает от ультрафиолетовой радиации. Ожоги листьев приводят к задержке роста, а иногда и к полной гибели растений. Растения высокогорья приспособились переносить больше ультрафиолетовых излучений, это сказывается на их карликовости. Однако эти же растения будут расти хорошо, а в некоторых случаях даже лучше без ультрафиолетового света.
Интенсивность солнечного света в течение суток меняется, достигая максимума около 12 часов дня, а минимума в утренние и вечерние часы. На интенсивность солнечного света влияет облачность и чистота воздуха (содержание пыли, дыма, водяных паров). Интенсивность освещения в насыщенной дымом атмосфере снижается более чем в 2 раза. Поэтому максимум солнечной радиации в промышленных центрах наступает не в полдень, когда в воздухе уже успевает накопиться больше пыли, а несколько раньше — к 11–12 часам, тогда как в сельской местности намного позже. Утренние и вечерние часы беднее ультрафиолетовыми и сине фиолетовыми лучами, чем полдень. Качественный состав света изменяется в зависимости от времени года и облачности. Содержание ультрафиолетовых лучей зимой в 20 раз меньше, чем летом, сине фиолетовых — в 5 раз. Все лучи этой части спектра летом имеют почти одинаковую интенсивность.
Интенсивность света. В северных районах и средней части России интенсивность и продолжительность солнечной радиации в зимние месяцы (ноябрь — декабрь — январь) снижается до такой степени, что успешное выращивание большинства овощных культур в защищенном грунте возможно и экономически целесообразно только при дополнительном искусственном освещении.
Радиация с длиной волны 380–750 нм (ФАР) является источником энергии фотосинтеза. Годовой приход ФАР зависит от географической широты территории. В связи с сезонными колебаниями длины дня и прихода ФАР в средних и высоких широтах световые условия не обеспечивают в осенне-зимние сроки возможности получения урожая светотребовательных культур (томат, огурец, редис и листовые выращиваемые из семян).
Снижение или увеличение интенсивности солнечной радиации находятся в зависимости от высоты солнца над горизонтом, а также от типа и степени облачности. Чем выше солнце над горизонтом, тем больше падает прямого солнечного света. До восхода солнца растения используют только рассеянную солнечную радиацию. С увеличением высоты солнца рассеянная солнечная радиация быстро уменьшается, а количество прямой солнечной радиации увеличивается. Соотношение между прямой и рассеянной солнечной радиацией находится в зависимости не только от высоты солнца над горизонтом, но и от состояния погоды, точнее — от типа и степени облачности. Мощные облака снижают интенсивность до 80 %.
Читать дальше
Конец ознакомительного отрывка
Купить книгу