При изучении мутаций самый главный вопрос — тоже получение кривых и их объяснение. Начнем с генных мутаций.
Главный результат сводится к тому, что зависимость числа мутаций от дозы выражается самой простой из возможных зависимостей — прямой линией. Прямая линия получается всегда: при действии рентгеновыми лучами и нейтронами; при облучении, заканчивающемся за несколько секунд, и при растягивании его на несколько дней, при высокой и низкой температуре, в опытах на излюбленной генетиками дрозофиле и на любых других организмах.
Но мало того, что почти все опыты дают прямые линии. Ведь и прямые линии могут идти по-разному, иметь разный наклон. Однако если поставить опыты по облучению дрозофил разными дозами рентгеновых, бета- и гамма-лучей разной жесткости, то для зависимости числа мутаций от дозы вовсе не получится пучка прямых линий, расходящихся веером. Нет, все экспериментальные точки (разумеется, в пределах точности опыта) лягут на одну прямую. Единственное серьезное исключение — быстрые нейтроны. Довоенные опыты показывают, что нейтроны менее эффективны, чем другие виды лучей. После войны некоторые авторы получили прямо противоположные результаты: нейтроны в несколько раз более эффективны. Теперь же пришли к выводу, что нейтроны оказывают ненамного больший эффект, чем рентгеновы лучи. В чем тут дело? Ни нейтроны, ни мухи не могли за это время стать другими. Генетики ставили опыты совершенно одинаково… Дело в физиках. Дозиметрия нейтронов дело не простое. Нетрудно подсчитать, сколько нейтронов «попало» в облучаемый объект. Но ведь для биологического эффекта важна энергия, которая поглотилась живыми клетками. А поглощенную энергию определить было нелегко.
Из этих простых фактов можно сделать важные выводы. Прямолинейная зависимость эффекта от дозы говорит о том, что возникновение генной мутации — реакция одного попадания, другими словами, для возникновения мутации необходимо и достаточно, чтобы через хромосому прошла всего одна ионизирующая частица.
Но проход частицы может оставить в хромосоме разную энергию. Какая же энергия необходима для возникновения мутации? Если бы для этого нужна была большая энергия, больше энергии одной ионизации, то редко ионизирующие (жесткие) лучи не при всяком проходе оставляли бы нужную энергию и потому должны были быть менее эффективными. Однако в опытах такого не наблюдается. Следовательно, для возникновения мутации достаточно энергии одной ионизации.
Итак, наследственное изменение, генная мутация, вызывается всего лишь одной ионизацией. А много ли может сделать одна ионизация? Не так много: произвести одно изменение в одной какой-нибудь молекуле. То есть может либо отщепиться, либо присоединиться, либо измениться какая-нибудь химическая группа. Значит, мутация — не что иное, как небольшое химическое изменение внутри гена. Такой вывод и как раз на основе анализа результатов опытов по вызыванию мутаций облучением смогли сделать уже в 1935 году Николай Владимирович Тимофеев-Ресовский, Карл Гюнтер Циммер и Макс Дельбрюк. Недавно с помощью более прямых методов молекулярной генетики удалось подтвердить правильность этого вывода.
Поломанные хромосомы
Многие слышали древнюю притчу о группе слепых, захотевших узнать, что такое слон. Пощупав его, один сказал: это колонна; другой: змея; третий: гора. Ясно, что один ощупывал ногу, другой — хобот, третий — туловище. Нечто подобное произошло в первые годы с исследованием хромосомных мутаций, вызываемых облучением.
За дело взялись две группы ученых. Прежде всего те же дрозофильные генетики. Они обнаруживали хромосомные мутации в опытах по скрещиванию. По распределению признаков среди потомства делали вывод о том, что произошла либо транслокация (обмен частями между двумя хромосомами), либо инверсия (внутренний участок хромосомы перевернулся на 180 градусов), либо делеция (небольшой участок вообще выпал и потерялся), либо еще какое-нибудь более сложное изменение. Во всех случаях речь шла об обменах частями между хромосомами или внутри хромосом.
Но ведь что-то очень похожее было знакомо генетикам давным-давно. Созревание зародышевых клеток сопровождается процессом, который называют кроссинговер, или перекрест хромосом. Хромосомы каждой пары сближаются, приходят в тесный контакт и обмениваются частями. Внешне хромосомы выглядят так же, как и до кроссинговера, но произошла перекомбинация отцовских и материнских генов. Это один из способов, с помощью которых природа увеличивает наследственное разнообразие живых организмов. Кстати сказать, именно кроссинговер помог «четырем разбойникам» определять расположение генов в хромосомах.
Читать дальше