Вопрос этот не новый, и сталкиваться с ним приходится вне всякой связи с лучами. С ним, в частности, имеют дело при борьбе с болезнетворными микробами. Есть средства, вполне надежно уничтожающие бактерий, например огонь, которым широко пользуются при стерилизации. Наиболее распространенные дезинфекционные средства, вроде карболовой кислоты, тоже убивают бактерий. Но подобные сильные средства нельзя применять для лечения людей. Медицине известно сейчас большое количество противобактериальных средств, в первую очередь антибиотики и сульфамиды. Но известно ли вам, что они бактерий не убивают? Они только лишают бактерий способности размножаться. А с теми, которые уже есть, организм обычно легко и сам справляется.
Что для нас более интересно: лизис или потеря способности к размножению? Конечно, второе. Ведь для лизиса требуются столь высокие дозы, что для радиобиолога они почти не представляют интереса. Они изменяют заметный процент молекул, и ничего необычного в такой гибели, так же как и в вызываемой огнем или кипятком, нет. А гибель, под которой мы понимаем потерю способности к размножению, действительно интересна. Ведь она вызывается совершенно ничтожной энергией — одной ионизацией, что даже для микроскопической бактерии является очень малой величиной.
То обстоятельство, что «гибель» бактерии — следствие одной-единственной ионизации, представляется действительно удивительным. Уж не в том ли здесь дело, что внутри бактерии есть какая-то особо важная мишень, о которой писал Хольвек?
Колебания маятника
Бактерии интересовали Ли не сами по себе. Ставя на них опыты, он хотел постичь общие законы действия ионизирующей радиации на живые организмы. И поэтому работал не только на бактериях. Таким образом, можно было выяснить, какие закономерности носят общий характер, а какие нет. Кроме того, сравнивая, скорее можно найти истину.
Ли ставил опыты и с вирусами, с бактериофагами, и с мухами, и с пыльцой растений, даже с растворами химически чистых веществ. Он интересовался экспериментами с яйцами морских ежей и с культурами тканей.
Закономерности, приводящие к потере способности размножаться и к гибели, оказались одинаковыми независимо от происхождения клеток. Растения, животные и микроорганизмы, одноклеточные и клетки, входящие в состав сложных организмов, реагируют на облучение очень сходным образом. Следовательно, механизм действия лучей во всех случаях одинаков.
Но к чему он сводится? Ли пришел к выводу, что в основе наблюдаемого эффекта лежит «попадание» в наследственный аппарат клетки. При этом вовсе не нужно, чтобы в клетке была одна мишень. Облучение может произвести в бактериальной клетке любое из многих сотен наследственных изменений, которое сделает ее потомство нежизнеспособным. Чтобы прийти к такому выводу, Ли потребовалось использовать факты, накопленные радиационной генетикой, которая ко времени работ Ли уже была неплохо развита и с которой скоро познакомимся и мы.
А пока придется сделать отступление и поговорить не о биологии, а о химии. У радиобиологии есть «сестра» — радиационная химия, наука о химических превращениях, вызываемых ионизирующими лучами. В наше время эта наука очень важна. Не зная, как радиация действует на те или иные материалы, нельзя построить ни атомного реактора, ни атомного ледокола. Однако этой наукой занимались и раньше. Очень часто так бывает: исследуют ученые что-то интересующее их с теоретической точки зрения, а потом оказывается, что они закладывали научный фундамент для решения важнейших практических проблем.
Еще в середине 20-х годов немецкий ученый Фрике (в начале 30-х годов, как и многие другие, покинувший Германию) изучал действие радиации на водные растворы различных веществ. Он получил результаты, которые было трудно объяснить. Чего, например, следует ожидать при изменении концентрации облучаемого раствора? Казалось бы, при облучении постоянной дозой процент измененных молекул меняться не должен, а общее число их будет возрастать пропорционально концентрации. Ничего подобного: число измененных молекул оставалось постоянным, а их процент с повышением концентрации падал!
В чем дело? Фрике подсчитывает, сколько молекул растворенного вещества может быть ионизировано при данной дозе, и получает парадоксальный результат: количество измененных молекул во много раз больше возможного числа попаданий в них. Создается впечатление, что эффект оказывают попадания не только в растворенные молекулы, но в молекулы растворителя, воды. Странно…
Читать дальше