Таким образом, туземец дене-динджие, пользуясь для счета пальцами рук, совершенно не имеет представления о пятеричной основе счисления. Он вовсе не говорит, как это мы часто видим у некоторых других племен, что 6 — второй один, 7 — вторые два, 8 — вторые три и т. д. Напротив, он говорит: 6 — три да три, возвращаясь вновь к руке, пальцы которой он перебрал, и разделяя их, чтобы к двум из них прибавить большой палец другой руки. Это свидетельствует о том, что, сосчитав 5, «кончив руку», он не остановился на данном моменте дольше, чем сосчитав 4 или 6. Таким образом, в этом случае и в других крайне распространенных и схожих с ним принцип периодичности, т. е. то, что сделается основой системы чисел, не содержится ни в самом способе счета, ни в совершаемых движениях.
Основа системы чисел может возникнуть по причинам, не имеющим ничего общего с удобством счета, причем идея арифметического употребления чисел еще не играет никакой роли. Пра-логическое мышление является мистическим, ориентированным по-иному, чем наше. Оно часто с полным безразличием относится к явным объективным свойствам вещей и интересуется, напротив, таинственными и скрытыми свойствами существ. Возможно, например, что основа 4 и четверичная система счисления обязаны своим происхождением тому, что совокупность-число четырех стран света, четырех ветров, четырех цветов, четырех животных и т. п., сопричастных четырем странам света, играет главную роль в коллективных представлениях данного общества. Таким образом, нам вовсе нет нужды разгадывать, напрягая психологическую проницательность, почему четверичная основа могла быть выбрана людьми, которые считали пятью пальцами своей руки. Там, где мы встречаем эту основу, она не была выбрана. Она как бы предсуществовала сама себе, подобно тому как числа предсуществовали себе в тот длинный период, когда они еще не были дифференцированы, когда совокупности-числа занимали место счисления в собственном смысле. Заблуждением было бы думать, что «ум человеческий» сконструировал себе числа для счета: между тем на самом деле люди производили счет путем трудных и сложных приемов, прежде чем выработать понятие о числе как таковом.
4
Когда числа имеют уже названия, когда общество располагает системой счисления, то из этого еще вовсе не следует, что тем самым числа начинают мыслиться абстрактно. Обычно они, напротив, остаются ассоциированными с представлением о предметах, наиболее часто подвергающихся счету. Так, например, йорубы, имеют довольно замечательную систему, выделяющуюся по тому применению, которое в ней дается вычитанию.
11, 12, 13, 14, 15 = 10 + 1, 10 + 2, 10 + 3, 10 + 4, 10 + 5;
16, 17, 18, 19 = 20 -4, -3, -2, -1;
70 = 20 × 4 — 10;
130 = 20 × 7 — 10 и т. д.
Факт этот, однако, объясняется постоянным употреблением у йорубов монеты, роль которой играют раковины каури : их раскладывают всегда кучками в пять, двадцать, двести и т. д. штук. «Имена числительные, — говорит наблюдатель, сообщающий нам этот факт, — представляются уму йорубов одновременно в двух значениях: во-первых, как число, во-вторых, как та вещь, которую йорубы преимущественно пересчитывают, т. е. каури . Другие предметы пересчитываются лишь путем сравнения с таким же количеством каури , ибо народ без письменности и школы не имеет никакого представления об отвлеченных числах». Это замечание действительно для всех обществ, находящихся на одинаковой ступени развития. Число, хотя оно и имеет соответствующее числительное, остается еще более или менее тесно связанным с конкретным представлением об известном разряде предметов, которые по преимуществу являются объектом счета, например о раковинах, а другого рода предметы подсчитываются путем наложения, так сказать, вторых на первые.
Но, допуская, что эта тесная связь мало-помалу разрывается и числа незаметно начинают представляться самостоятельно, вовсе не следует думать, что они становятся уже отвлеченными, и именно потому, что каждое имеет свое имя числительное. В низших обществах ничто или почти ничто не воспринимается так, как казалось бы естественным для нас. Для их мышления не существует физического факта, который был бы только фактом, образа, который был бы только образом, формы, которая была бы только формой. Все, что воспринимается, включено одновременно в комплекс коллективных представлений, в котором преобладают мистические элементы. Точно так же не существует имени, которое было бы просто и только именем, не существует и имени числительного, которое было бы просто именем числительным. Оставим в стороне практическое применение, которое первобытный человек дает числам, когда он считает, например, сколько ему осталось часов работы или сколько рыбы он поймал. Всякий раз, когда он представляет себе число как число, он по необходимости представляет себе его вместе с каким-нибудь мистическим свойством и качеством, которые принадлежат данному числу и именно ему одному в силу столь же мистических партиципаций. Число и его имя нераздельно выступают проводником этих партиципаций.
Читать дальше