Писатель Дэн Кеппел даже назвал свою книгу Get What You Pay For: Save 200 % on Stocks, Mutual Funds, Every Financial Need («Получите то, за что вы платите: экономьте 200 % на бирже, инвестиционных фондах открытого типа, на любой финансовой потребности»). У Кеппела есть степень MBA. Ему следует лучше разбираться в вопросе. Конечно, чтобы аккуратно сравнивать проценты, их нужно брать от одного и того же базового показателя. Нельзя вернуться к изначальному уровню зарплаты, сокращенной на 50 %, увеличив на 50 % вашу новую, более низкую зарплату [11].
Проценты кажутся простыми и логичными, но иногда они могут и запутать. Если процентная ставка увеличивается с 3 до 4 процентов, то она увеличивается на 1 процентный пункт, или на 33 % (так как увеличение на 1 процентный пункт отсчитывается от базового показателя 3; это увеличение на 1/ 3 = 0,33 от 3). Если же процентная ставка упадет с 4 до 3 процентов, то она уменьшится на 1 процентный пункт. При этом она уменьшится не на 33 %, как в предыдущем случае, а на 25 %, потому что уменьшение на 1 процентный пункт отсчитывается от базового показателя 4 (1 – это 1/ 4, или 25 %, от 4). Исследователи и журналисты не всегда щепетильны в этом вопросе и не видят порой разницы между процентными пунктами и процентами, но вы не должны их путать [12].
The New York Times сообщила о закрытии текстильной фабрики в Коннектикуте и ее переезде в Вирджинию [13]. Причиной такого решения стали возросшие расходы на сотрудников. По сведениям газеты, «фонд заработной платы, все виды компенсации сотрудникам, а также пособие по безработице в Коннектикуте в 20 раз выше, чем в Вирджинии». Правдоподобно ли это? Если бы это было так, вы бы, наверное, ожидали массового исхода в Вирджинию – все компании, а не только эта фабрика, захотели бы переехать, и вы бы уже знали об этом. На самом деле все это неправда, и Times пришлось опубликовать опровержение. Как же такое могло произойти? Дело в том, что журналистка просто неправильно прочла отчет компании. Один показатель – пособие по безработице – на самом деле обходился компании в 20 раз дороже в Коннектикуте, чем в Вирджинии, но с учетом остальных показателей в Коннектикуте все расходы на содержание штата были в целом выше в 1,3 раза, а не в 20 раз. У автора статьи не было образования в сфере бизнес-администрирования – и мы не вправе ожидать этого. Чтобы отследить такого рода ошибку, нужно просто спокойно все обдумать. Это под силу каждому (а журналистка и ее редакторы просто обязаны были это сделать).
В Нью-Джерси одобрили новую законодательную инициативу, согласно которой матери, находящиеся на социальном обеспечении, не получали никаких дополнительных льгот [14]. Некоторые члены законодательного органа посчитали, что женщины в Нью-Джерси специально рожали детей, чтобы увеличить ежемесячное пособие, получаемое от государства. Через два месяца законодатели заявили, что им удалось решить этот вопрос, так как уровень рождаемости снизился на 16 %. Вот что писала New York Times:
Всего два месяца спустя государство опубликовало данные о том, что количество новорожденных детей у женщин, уже находящихся на социальном обеспечении, уменьшилось на 16 % [15]. Власти поздравляют себя с потрясающими результатами, которых они добились в такие короткие сроки.
Обратите внимание, что учитывались не беременности, а количество родов. Что же здесь не сходится? Так как беременность длится девять месяцев, никакие изменения за последние два месяца нельзя связывать напрямую с законом. Скорее всего, тут свою роль играют обычные колебания рождаемости (ведь известно, что уровень рождаемости – дело сезонное).
Есть в этом вопросе и другие неточности, которые нельзя обнаружить простой проверкой на правдоподобие:
…с течением времени эти 16 % сократились до 10 %. Дело в том, что государству стало известно о родах, о которых не сообщалось ранее. Оказалось, что многие роженицы не считали нужным сообщить о своих новорожденных детях, так как их социальные дотации на период ухода за ребенком никак не увеличивались [16].
Вот вам пример того, с какими проблемами можно столкнуться, собирая статистические данные: оказывается, мы учитываем не всех людей, хотя думаем, что охвачены все. Одни ошибки в рассуждениях заметить проще, другие сложнее, но со временем мы лучше научимся их распознавать. Для начала давайте взглянем на простой инструмент, который часто используют неверно.
Читать дальше