Детский сад тут не исключение: если посмотреть, чему учат в детских садах Монтессори, так это умению ухода за собой (поесть, поспать, держать себя в чистоте, убрать место своих занятий), проявлению любопытства и разумной осторожности в сложных ситуациях, соблюдению правил, но не слепо игнорируя при этом ситуацию, чтобы не стать заложником ошибок в правилах. Очень многие известные успешные предприниматели вышли из детских садов и школ Монтессори – так может быть нужно учить сразу тому, чему там учат, причём учить современному знанию, как это нужно делать, а не старинному времён начала деятельности Монтессори в середине прошлого века? За почти сто лет многое ведь изменилось, человечество много чего узнало нового?
Так что первый шаг – это разобраться, что в детском саду, школе, бакалавриате даётся общего и полезного для повседневного использования в жизни, для разбирательства с новыми ситуациями, а что там преходящее, прикладное, требующее постоянного переучивания.
И ещё дополнительно нужно следить, чтобы это «общее и полезное для повседневного использования» было самой свежей версии. Например, общеполезное знание «в незнакомой ситуации погугли» относительно недавнее. Раньше это было эквивалентно «сходи в библиотеку», и даже в библиотеке не было понятно, что делать дальше. Относительно новый повседневный навык, общий для всех ситуаций – воспользоваться полнотекстовым поиском в интернете. И это должно даваться ещё в детском саду (если писать не умеешь, то спроси голосового помощника, он ответит голосом даже детсадовцу: Google Assistant, Алиса от Яндекса, Маруся от мейл.ру, семейство Салют от Сбера, и всё это имеет ещё и телефонные, и компьютерные версии, необязательно иметь именно «железо» помощника). Увы, и детский сад, и школа проходят мимо этого, ещё и ограничивают доступ, «как бы чего-нибудь нецензурного не узнали»! И в вузе скорее учат не пользоваться интернетом, «чтобы оттуда не списывали», чем учат пользоваться! Так что новые повседневные навыки не имеют шанса сегодня попасть в общеобразовательную программу.
Вообще, свежесть общецивилизационного, а не узкоприкладного знания – это отдельный важный вопрос, и его затронем чуть попозже. Пока же разбираемся с вопросом о самом различении умений и навыков с повсеместной используемостью в разных ситуациях и умений и навыков с прикладной более узкой применимостью. Одним учат в детском саду, школе, бакалавриате и это не предполагает «профессионализма», а другим – в магистратуре, и там даются «профессиональные» навыки и умения.
ПРЕДОБУЧЕНИЕ В МАШИННОМ ИНТЕЛЛЕКТЕ
Какой-то аналог этой ситуации с общим предобучением в детском саду, школе, бакалавриате и потом дообучением целевому прикладному мастерству в магистратуре может быть подсмотрен в исследованиях по машинному интеллекту. Там ведь стоит такая же задача по обучению нейронной сети самым разным прикладным умениям (о мастерстве/компетенциях в применении к нейронным сетям говорить сложно: там ведь включается в разговор личное отношение к делу, в отличие от знаний, навыков, умений, которые демонстрируются и вне связи с личным отношением. То есть нейронная сетка может быть умелой, но не может продемонстрировать мастерство!).
Говорят об этом обучении/learning нейронных сетей ровно тем же языком, которым говорят об обучении людей. Но говорят точнее, ибо математиков и логиков в сфере AI больше, чем среди педагогов, и решают эти математики задачи более трудные: компьютеры научить интеллекту как умению решать задачи, ранее не встреченные в учебных примерах, труднее, чем людей. Поэтому мы активно будем делать «реэкспорт» идей из сферы инженерии AI в сферу образования людей, включая «реэкспорт» терминологии. После того как люди из AI взяли эти идеи из образования, почистили и обогатили их, мы возьмём их и опять применим к обучению людей.
Главное направление в обучении AI решению самых разных задач, связанных с пониманием естественного языка – это использование так называемых больших языковых моделей. Берётся огромная нейронная сеть. Насколько огромная? На данный момент речь идёт о единицах триллионов настраиваемых индивидуально в ходе обучения параметров, но уже ожидается и до сотни триллионов параметров. Этой нейронной сети скармливается огромное/gargantuan число самых разных текстов на всех доступных языках (так, для обучения языковой модели GPT-3 вся википедия составила только 3% от использованных текстов). В этих текстах отражены как и какие-то свойства языков в целом (кормят текстами отнюдь не только одного языка, и даже не только естественного языка, но кодами на языках программирования), так и какие-то свойства мира (ибо все эти тексты о чём-то в мире, речь не идёт о фантастике и сказках). В последнее время в обучение добавляют не только тексты, но и фотографии, рисунки, и даже видео. Нейронная сетка выучивает из всех этих описаний мира что-то общее про языки и мир. Это называется pre-train, предобучение. И занимает это предобучение довольно много времени и денег – одна предобученная языковая модель на пару сотен миллиардов параметров на середину 2020 года могла обходиться в десятки миллионов долларов 78 78 https://arxiv.org/abs/2004.08900
, и эта ситуация не меняется: стоимость суперкомпьютеров падает, но размеры нейронных сетей растут, и речь идёт уже о триллионах параметров! Бакалавриат для нейронных сетей оказался весьма недешёв, и занимаются созданием универсальных предобученных языковых моделей только несколько очень крупных и богатых фирм мира (в России, например, это Сбер и Яндекс 79 79 Можно попробовать в работе на русском языке предоставленную Сбером предобученную языковую модель: https://sbercloud.ru/ru/warp/gpt-3 , и попробовать предобученную Яндексом языковую модель: https://yandex.ru/lab/yalm?style=0 , при этом есть и некоторое разнообразие архитектур этих моделей, https://huggingface.co/sberbank-ai
).
Читать дальше