По большому счёту всё равно: у вас предпринимательская гипотеза, научная гипотеза, инженерная гипотеза: выдвижение гипотез и их проверка относится к общим мыслительным умениям, хотя по-старинке называется «научным мышлением». Научное мышление общеупотребимо, любое «проверить идею», «понять причины», то есть объяснить. Этим поиском объяснения, выдвижением и проверкой гипотез для объяснений занимаются ежедневно миллионы учёных, но также и менеджеров, предпринимателей, инженеров, разглядывающих многочисленные данные по их предметам интереса. Предпринимательская гипотеза – это не научная гипотеза, но она одной природы с научной гипотезой, это догадка, которая должна выдержать проверку! Eureqa предлагает облегчение труда для самых разных людей, занимающихся выдвижением догадок/гипотез/guesses в самых разных деятельностях, и таких AI-сервисов по выдвижению гипотез будет много, они будут конкурировать, цена типовых «объяснений» будет падать. При этом цена самых трудных объяснений будет оставаться прежней и не падать, зато доступная для этой высокой цены трудность поиска и разнообразность доступных приёмов объяснения будет всё время расти.
Сама физика в текущих работах только привлекает внимание к новым алгоритмам, демонстрирует работоспособность алгоритмов научного мышления. Разработчики Eureqa не имеют какого-то отношения ко всей этой космологии и гамильтонианам, они просто «разрабатывают искусственный интеллект», что бы это ни значило. Им всё равно, объяснять движение планет, или движение курсов акций на фондовом рынке. Но они со своими объяснениями сначала пришли в науку, и продемонстрировали, что их алгоритм выдвигает гипотезы не хуже Кеплера!
Наука уже не будет прежней, и к ней пришли «сбоку»: к физикам пришли люди, занимающиеся нейронными сетями и символьной регрессией, а не физикой.
Копают люди давно уже не руками, и не палкой-копалкой, и не лопатой, а экскаватором. Для вытаскивания законов природы из данных палка-копалка из нейронных сетей и символьной регрессии уже готова, статья опубликована. А лет через пять ждём, что новые законы будут грести уже лопатой. Лет через двадцать-тридцать можно ждать и «научного экскаватора». Просто удивительно, как мало людей, понимающих суть происходящих перемен. В науке тоже всё новое приходит сбоку, и неудивительно, что «старые физики» не будут понимать, что происходит – как уже сейчас «старые лингвисты» не понимают, как устроены современные системы машинного перевода.
Искусственный (он же машинный) интеллект развивается сейчас особенно быстро, и Тим Урбан даже нарисовал про это иллюстрирующую экспоненциальные технологии картинку 40 40 https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html
:
Это картинка 2015 года. В то время трудно было представить, что робот-юрист возьмёт на себя 80% юридической работы в фирме, держащей миллионы контрактов. Или что AI победит чемпионов мира в Го, в StarCraft II. Машинный интеллект по сфере своего использования такой же, как естественный: он может применяться везде. В том числе и в диджействе. Технология NeuralMix в приложении DjayProAI для iOS получила апдейт 41 41 https://www.youtube.com/watch?v=yP5cavP4eWc , https://www.algoriddim.com/djay-ios/releasenotes
: раньше она могла разделить запись музыки на вокал, перкуссию и всё остальное, а теперь может разделить на вокал, перкуссию, бас и всё остальное. Смешивать два трека диджею можно уже не целиком, а отдельно каждую из четырёх частей трека. Но тут нейронные сети не просто автоматизируют труд диджея, но делают то, что человек раньше делать не умел. А ведь диджейство по факту массовая профессия: раньше учились массово семь лет в музыкальной школе, а теперь учатся год в школе диджеев – и пультов диджеев продаётся уж не меньше, чем роялей, просто на это уже мало кто обращает внимания. Сочиняет ли компьютер музыку? Да, конечно. Сочиняет ли новую музыку, или только перемешивает в новых сочетаниях давно известное? Сочиняет, проверено 42 42 https://arxiv.org/abs/2011.13062
.
Последствия гиперэкспоненциального развития машинного интеллекта закрыты туманом будущего. Но уже сегодня понятно, что эти последствия будут весьма заметными для каждого человека на Земле. Масштабы? Например, треть IT-бюджетов реального сектора сегодня направлены на проекты с AI, это неожиданный, но факт 43 43 https://www.zdnet.com/article/manufacturers-allocate-one-third-of-overall-it-spend-to-ai-survey-shows/
. Сегодняшние инвестиции дадут отдачу через пару лет (дайте время на разработку и запуск новых интеллектуальных IT-систем в производство). Жизнь на производстве будет меняться, и быстро: деньги-то в это изменение уходят не маленькие! Скажем, переход с плановых ремонтов (35% этих ремонтов «чинят не поломанное», то есть бесполезны) на ремонты по состоянию, моменты которых определяются программами AI высвобождает в масштабах планеты огромное количество труда, который сейчас абсолютно бесполезен. Представляете, сколько это труда на планете – треть плановых ремонтов? И дело не только в этом труде. Если оборудование не останавливать для ремонта, это дополнительный выигрыш. Человечество будет богаче. Машинный интеллект выгоден.
Читать дальше