Глава 2.6
Теломера, или лекарство близко
Самый грандиозный в истории прорыв в медицине вот-вот случится. И связан он с теломерной теорией. Ученые считают, что теломеразы – ферменты, способные удлинять теломеры, могут вылечить старение и связанные с ним заболевания. Теломеры – это структуры ДНК на концах хромосом, которые укорачиваются с каждым делением клетки. Непосредственная связь между теломерами и старением организма была обнаружена в 1992 году вместе с открытием, что дети с прогерией рождаются с короткими теломерами. Дети с прогерией Гетчинсона – Гилфорда, часто ее называют просто прогерией, умирают от старости примерно в тринадцать лет. В мире детей с таким диагнозом всего несколько десятков, и внешне они больше похожи друг на друга, чем на своих родителей, даже если принадлежат разным расам. Эти дети не просто выглядят старыми: их клетки на самом деле старые, и они умирают от заболеваний, которые мы считаем возрастными.
Начало открытию положили исследования 60-х годов. До этого времени считалось, что клетки не стареют, а все таинство, которое хотелось бы лучше отменить, происходит где-то между ними. Действительно, одноклеточные организмымогут делиться практически бесконечно, и дочерние клетки такие же молодые, как материнские. Профессор анатомии из Калифорнийского университета в Сан-Франциско Леонард Хейфлик и его коллеги работали с клеточными линиями куриного сердца, т. е. с исходно частью многоклеточного высокоорганизованного организма. Они обнаружили, что клеточные линии одинаково стареют после фиксированного количества делений и, в конце концов, теряют способность делиться.
На основе работы Хейфлика и его команды появилось понятие «предела Хейфлика». Если проще, то эта теория утверждает, что большинство клеток может делиться лишь фиксированное число раз. Большинство человеческих клеток делятся от сорока до шестидесяти раз, и скорость деления постепенно уменьшается, пока клетки не становятся инертными и неспособными к дальнейшему делению. Иными словами, стареют именно клетки, а не что-то между ними, и стареют они не из-за того, что проходит время: старение клеток вызывается делением. Хейфлик назвал ядро клетки ключевым компонентом клеточного старения: оно контролировало так называемые «клеточные часы».
Теперь вернемся к теломерам. Их впервые обнаружил и назвал американский генетик Герман Мёллер в 1938 году; он образовал название от греческих слов телос «конец» и мерос «часть». Через два года цитогенетик Барбара Мак-Клинток, получившая за это Нобелевскую премию, описала функцию теломер – они защищают концы хромосомв некоторых клетках многоклеточных организмов. Именно поэтому часто в популярной литературе их изображают в виде шнурочков с твердыми пластиковыми колпаками на концах. Поскольку эти последовательности не кодируют белков, их часто считают «мусорной ДНК», но ее роль – другая, не менее важная. Ее удалось открыть, как это бывает, в неожиданном месте в неожиданное время, а именно в метро. И это сделал наш соотечественник Алексей Оловников в 1971 году.
Однажды Оловников ехал на метро, и его поразило сходство между хромосомами и поездами метро. Он задумался о том, как копируются хромосомы во время деления клетки, и понял, что там есть определенная проблема. Клетка использует ферменты, называемые ДНК-полимеразами, чтобы копировать ДНК, из которой состоит хромосома. Но этим ферментам приходится «держаться» за часть старой хромосомы, когда она начинает копировать гены, так что ДНК-полимераза не может воссоздать часть хромосомы, которая находится прямо «под» ней: точно так же с помощью вагона метро можно прокладывать новые рельсы в туннеле, но вот прямо под собой он рельсы положить не может. Поскольку ДНК-полимераза может копировать только в одном направлении и должна всегда держаться за маленькую часть хромосомы, она не может вернуться и скопировать пропущенные нуклеотиды.
Внезапное озарение Оловникова оказалось абсолютно верным. Во время репликации копируется большая часть хромосомы, но не вся: маленькая часть всегда теряется. Каждый раз при копировании хромосома становится чуть короче. Как оказалось, фермент при копировании хромосомы как раз держится за теломеру. Поскольку часть теломеры, за которую «держится» ДНК-полимераза, невозможно скопировать, новая теломера становится чуть короче исходной. Когда вы молоды точнее, когда ваши клетки молоды, длина теломеры составляет примерно 15 000 спаренных оснований. Когда клетки теряют способность делиться, длина теломеры сокращается примерно до 8000 оснований. Оловников предположил, что укорочение теломер – это механизм, благодаря которому существует предел Хейфлика (см. пояснения на с. 113).
Читать дальше
Конец ознакомительного отрывка
Купить книгу