В любых соревнованиях некоторые новички сыграют лучше, чем обученные профессионалы.
А теперь вопрос: если мы проведем соревнование между новичками и обученными гольфистами (скажем, по 30 человек в обеих группах) и каждый сделает по 20 ударов, то каковы шансы у одного из членов первой и у одного из членов второй группы занять первое место? Конечно, более вероятно, что победит обученный гольфист, но насколько? Есть ли шанс, что победителем станет новичок, или это маловероятно?
Чтобы выяснить это, я использовал моделирование Монте-Карло, метод, разработанный в 1940 году, когда ученым из Манхэттенского проекта понадобилось предсказать исход цепных ядерных реакций. Физика цепных реакций настолько сложна, что точный расчет в этом случае был невозможен. Легче было рассчитать, что произойдет в целом ряде испытаний, а затем, объединив результаты, получить представление о распределении возможных исходов. Ученые Джон фон Нейман и Станислас Улам назвали свой метод в честь Монте-Карло – казино в Монако с его знаменитой рулеткой. При любом однократном вращении колеса рулетки шар попадает только на один слот, из чего мы получим мало информации. Но поверните колесо рулетки тысячу раз, и получите представление о том, что может случиться. [77] Хорошее описание истоков метода Монте-Карло в физике предоставлено профессором Дэвидом Штигельхальтером в программе Би-би-си «Tails You Win: The Science of Chance» («Шансы, которые вам выпадают: Наука о вероятностях») (BBC4, December 20, 2012). См. также Roger Eckhardt, “Stan Ulam, John von Neumann, and the Monte Carlo Method,” Los Alamos Science Special Issue 15 (1987): 131–137.
Рис. 4.2. Группа обученных: 40-процентный уровень попаданий
Рис. 4.3. Объединение групп начинающих (30 %) и обученных (40 %)
Изучая влияние изменения абсолютной производительности на относительную, я провел имитационные эксперименты по методу Монте-Карло, чтобы иметь результаты тысячи соревнований, где 30 новичков и 30 обученных гольфистов делают по 20 ударов. Результаты показали: 86,5 % времени, в 865 из 1000 испытаний победителями стали члены обученной группы. 9,1 % времени сохранялось преимущество группы обученных, и только 4,4 % времени, всего 44 раза из 1000 испытаний, самый высокий результат был получен в группе начинающих. Абсолютное преимущество группы обученных, 40-процентное попадание по сравнению с 30-процентным, обеспечивало своим членам почти непреодолимое относительное преимущество. Лучшие начинающие побеждали всех 30 обученных игроков реже одного раза из 20.
А что, если бы выигрыш от обучения был бы намного меньше – например, меткость повысилась бы от 30 до всего лишь 33 %? Если обученная группа будет иметь распределение, как на рис. 4.4, то перекрытие с группой начинающих станет значительно больше, как показано на рис. 4.5. Вероятность того, что новичок сможет выиграть, должна повыситься, и мы действительно это наблюдаем. Тем не менее метод Монте-Карло показал: в соревновании, где 30 членов каждой группы сделают по 20 ударов, член группы начинающих закончит победителем в 19,9 % случаев (в 199 из 1000 испытаний). Член группы обученных победит в 55,5 % случаев (555 из 1000), и в 24,6 % счет будет равным. Даже относительно небольшое улучшение, с 30 до 33 %, обеспечивает группе обученных более чем двукратное преимущество.
Рис. 4.4. Группа обученных: 33 % попаданий
Рис. 4.5. Объединение группы начинающих (30 %) и группы обученных (33 %)
Урок ясен: в условиях конкурентной борьбы даже умеренное повышение абсолютной производительности может оказать огромное влияние на относительную производительность. И наоборот, неспособность использовать все возможные преимущества для повышения абсолютной производительности оказывает сокрушительное действие на вероятность выигрыша. В этих условиях насущная необходимость – поиск способа повысить эффективность. [78] Улучшения из этих примеров, от 30 до 40 % (прирост 33 %) или от 30 до 33 % (прирост 10 %), были бо́льшими, чем прирост, который обеспечивал ЭПО. По оценкам, он повышал производительность на 5 %. Значит ли это, что при езде на велосипеде перекрытие между двумя группами будет больше, что ослабляет аргумент, что победитель, скорее всего, использовал допинг? Ответ: нет, потому что мы должны рассмотреть еще одну переменную. В моей модели соревнований по гольфу каждый участник делал по 20 ударов. Если бы я попросил сделать, скажем, 100 ударов, то перекрытие между группами стало бы значительно меньше, так же как и шанс члена группы начинающих опередить члена обученной группы. Учитывая, что Тур де Франс – многоэтапный велопробег и его длина несколько тысяч километров, вероятность того, что спортсмен с более низкой производительностью сможет победить спортсмена с более высокой, очень невелика. При прочих равных условиях повышение на 5 % за счет ЭПО или какого-либо другого вспомогательного средства создает почти непреодолимое конкурентное преимущество. – Прим. авт.
Читать дальше
Конец ознакомительного отрывка
Купить книгу