Все дело в кодировании. Когда речь идет о многих, если не всех, способностях, мы знаем, какие единицы измерения использовать, и можем перевести эти данные в числа (количество слов, написанных без ошибок; процент точных бросков за игру). Но в каких единицах измерить дружелюбность — в улыбках за минуту? В частоте положительных эмоций при общении? Как сравнить способы, которыми люди выражают дружелюбие на субботней вечеринке и на совещании в понедельник? Даже в этих двух типах обстоятельств люди ведут себя настолько по-разному, что знаки, которые мы воспринимаем как доказательства дружелюбия, в одной ситуации будут одни, а в другой — совсем другие. А уж пытаться перевести эти знаки дружелюбия в числовой эквивалент трудно или вовсе невозможно. Даже если мы могли бы перевести их в числа, мы не знали бы, как сравнивать индикаторы дружелюбия в ситуации А с индикаторами дружелюбия в ситуации Б.
Как же избежать ошибки в оценке личностных качеств? Мы не найдем точные единицы измерения и не сумеем дать им числовые значения. Психологи проделывают это в ходе исследований, но если бы мы с вами проводили подобные вычисления, мы бы ни с кем не смогли ими поделиться, потому что любой человек подумал бы, что мы сошли с ума. («Я даю Джону 18 баллов по шкале дружелюбности на совещании на основе общего количества улыбок, рассчитав соответствующее количество движений его губ. Подождите, не уходите! Куда вы?»)
Самый эффективный способ избежать неоправданно далекоидущих выводов о чьем-либо характере — напомнить себе, что поведение человека скорее всего будет одинаковым от случая к случаю только тогда, когда контекст ситуации совершенно одинаков. И даже в таком случае необходимо провести как можно больше наблюдений, чтобы быть уверенным в своем прогнозе.
Возможно, поможет также вспомнить, что вы сами не так уж чертовски последовательны. Я уверен, что люди, которые познакомились с вами в одних ситуациях, отзывались потом о вас как о милом дружелюбном человеке, а люди, которые видели вас в других ситуациях, посчитали вас совсем не милым и не дружелюбным. Кроме того, я уверен, что вы не обвинили бы этих людей в том, что они делают слишком поспешные выводы, принимая во внимание те сведения, что у них были. Просто помните, что то же самое верно и по отношению к тому парню, с которым вы только что познакомились. Нельзя утверждать, что он произвел бы на вас точно такое же впечатление в другой, возможно, совершенно иной ситуации, в которой вы могли повстречать его.
Говоря в более общем смысле, помните, что вы можете закодировать, а что нет. Если вы не можете навскидку закодировать или перевести в численный эквивалент значения данного события или поведения, попытайтесь придумать способ кодировки данного значения. Даже попытка сделать это, вероятно, станет для вас предупреждением, что вы рискуете переоценить систематичность события или поведения.
Есть и хорошая новость по поводу всего сказанного в этой и предыдущей главах. Мы говорили о методах статистики применительно к немногим и весьма узким сферам деятельности. Однако мой опыт показывает: даже нескольких примеров бывает достаточно, чтобы научить людей делать логические выводы из огромного количества событий, ничуть не напоминающих примеры из этой книги.
Когда я объясняю действие закона больших чисел на примере лотерей или подбрасывания монетки, то есть того, что в нашем представлении связывается со статистикой, мои слушатели начинают делать успешные умозаключения по поводу событий, о которых они не думают в вероятностном смысле, например об объективном измерении способностей [120] Fong, Geoffrey T., David H. Krantz, and Richard E. Nisbett. "The Effects of Statistical Training on Thinking About Everyday Problems." Cognitive Psychology 18 (1986): 253-92.
. Как и о других явлениях, которые мы редко оцениваем в статистическом смысле, например о чертах личности. То же самое происходит, когда я призываю использовать только объективно измеряемые показатели способностей либо, наоборот, приводить субъективные, трудно поддающиеся измерению величины в качестве примеров. Когда человек учится решать задачи одного типа, он начинает лучше справляться с задачами совершенно иного типа.
Выводы
Точная оценка взаимосвязей может быть в вышей степени затруднительной. Даже если данные собраны и суммированы за нас, мы можем неверно оценить степень ковариации. Необъективность подтверждения — наиболее распространенная ошибка: если какие-то значения А равны значениям Б, этого может быть достаточно, чтобы мы посчитали, что А связано с Б. Но на самом деле, чтобы оценить, связано ли значение А со значением Б, необходимо сравнить две пропорции, составленные на основе четырехпольной таблицы.
Читать дальше
Конец ознакомительного отрывка
Купить книгу