Из этой предпосылки исходили лучшие школы бизнеса и ведущие коммерческие компании, что заметил еще Джефф Колвин. Они верили, что способны подготовить превосходных менеджеров, которых можно десантировать практически в любую организацию, и они преобразуют ее при помощи более совершенного мышления. Опыт не учитывался – для решения задач достаточно блестящего ума и способности использовать силу логики. У этого подхода были серьезные недостатки. Когда в 2001 году главой General Electric стал Джефф Иммельт, он заказал исследование наиболее успешных компаний в мире. Что у них общего? Как писал Колвин в своей книге «Талант ни при чем!», «одна из ключевых характеристик, выявленных в результате исследования, заключалась в том, что эти компании ценили у своих менеджеров «опыт работы в своей области» – то есть обширные знания в области деятельности компании. После этого Иммельт указывал «глубокий опыт в данной области» как необходимое условие продвижения в General Electric».
Эти выводы не просто заняли центральное место в современной бизнес-стратегии, а составили основу искусственного интеллекта. В 1957 году два специалиста по компьютерам разработали программу под названием «Универсальный решатель задач», которая представляла собой алгоритм для решения любых задач. Никакими конкретными знаниями она не обладала, но у нее имелся «общий решающий движок» (фактически набор абстрактных процедур логического вывода), который, по мнению авторов, мог решить практически любую задачу.
Но вскоре выяснилось, что вычисления без знаний – даже самые изощренные – ни на что не способны. Вот как сформулировали это Брюс Бьюкенен, Рэндалл Дэвис и Эдвард Фейгенбаум, три ведущих специалиста по искусственному интеллекту: «Самый важный компонент любой системы искусственного интеллекта – это знание. Программы, владеющие общими стратегиями выбора – некоторые из них даже не чужды математической логики, – но слабо обученные конкретному знанию в предметной области, практически не способны справляться с каким бы то ни было заданием».
Вспомним о пожарных. Многих молодых людей эта профессия привлекает потому, что они считают себя способными принимать решения в сложных ситуациях, однако они быстро понимают, что ошибались. При взгляде на бушующий пожар они обращают внимание на высоту и цвет пламени, а также другие явные признаки – как и все остальные люди. И только после десяти лет работы у них появляется способность помещать увиденное в контекст сложных связей для понимания структуры пожара.
Серьезным препятствием к достижению совершенства является тот факт, что экспертным знаниям невозможно обучить в аудитории за один дождливый день – и даже за тысячу дождливых дней (у пожарных, деятельность которых изучал Кляйн, средний опыт работы составлял 23 года). Конечно, вы можете предложить рекомендации, на что следует обращать внимание, а чего опасаться, и эти подсказки будут полезными. Но связать всю информацию в единое целое будет невозможно, потому что признаки, которые оценивают эксперты – в спорте или любой другой области, – настолько неуловимы и находятся в такой сложной взаимосвязи друг с другом, что для построения всеобъемлющей системы потребуется вечность. Это явление называется комбинаторным взрывом – понятие, которое поможет разобраться со многими выводами данной главы.
Наилучший способ понять необычную силу комбинаторного взрыва – представить, что вы складываете лист бумаги пополам, делая его в два раза толще. Теперь повторите это действие сто раз. Какова будет толщина бумаги? Диапазон большинства ответов – от нескольких сантиметров до нескольких метров. На самом деле толщина бумаги будет в 800 тысяч миллиардов раз больше, чем расстояние от Земли до Солнца.
Именно быстрое увеличение числа переменных во многих ситуациях реальной жизни – в том числе в спорте – делает невозможным тщательный анализ доказательств перед принятием решения: это займет слишком много времени . Эффективное принятие решений основано на сжатии информационного потока путем дешифровки значения структур, почерпнутых из опыта. Этому невозможно научить в аудитории и это не врожденная способность – такое умение приобретается только с помощью опыта. Другими словами, нужна практика.
Пол Фелтович, исследователь из Института когнитивных способностей человека и машин в Университете Западной Флориды говорит: «Хочется думать, что, зная, как добивается успеха мастер, мы можем напрямую обучать новичков, но это неверно. Мастерство – продолжительный процесс развития, результат обширного действенного познания мира и богатой практики. Его нельзя просто передать другому».
Читать дальше
Конец ознакомительного отрывка
Купить книгу