Единственным объяснением было то, что атомы в таком кристалле были внутренне организованы и вели себя так, как будто они были единым гигантским атомом. Ученые внезапно осознали: все атомы должны быть взаимосвязаны.
Одним из наиболее странных аспектов квантовой физики является феномен нелокальности, которую также образно называют «квантовой запутанностью» или сцепленностью. Датский физик Нильс Бор открыл, что после контакта электронов и протонов эти субатомные частицы навсегда сохраняют «знание» друг о друге и оказывают моментальное взаимное влияние, какое бы расстояние их ни разделяло, несмотря на отсутствие того, что физики считают ответственным за всякое воздействие – взаимообмена силой или энергией. Когда частицы сцеплены, любое состояние одной из них, например магнитная ориентация, всегда будет влиять на состояние другой, вне зависимости от того, насколько далеко они находятся друг от друга. Эрвин Шрёдингер, еще один разработчик квантовой теории, был убежден, что открытие нелокальности является определяющим моментом квантовой теории, ее ключевым свойством и предпосылкой.
Активность сцепленных частиц аналогична поведению близнецов, разделенных при рождении, но навсегда сохраняющих одинаковые интересы и телепатическую связь. Один из близнецов живет в Колорадо, другой – в Лондоне. Хотя они никогда больше не встретятся, оба предпочитают синий цвет, оба работают инженерами, оба любят кататься на лыжах; более того, когда один из них падает и ломает правую ногу на горнолыжном курорте в Колорадо, второй в тот же самый момент также ломает правую ногу, хотя находится на расстоянии шести с половиной тысяч километров и попивает латте в «Старбаксе» [30] Я обязана доступному объяснению квантовой нелокальности исследованиям Даны Зохар, взятым из книги: Zohar D. Quantum self. N. Y.: Bloomsbury, 1991. P. 19–20.
. Альберт Эйнштейн отказывался признавать нелокальность, презрительно называя ее Spukhafte Fernwirkungen («жуткое дальнодействие»). Он говорил, что для такой мгновенной связи необходимо, чтобы информация перемещалась быстрее скорости света, следуя известному мысленному эксперименту. Это нарушает положения его собственной теории относительности [31] Einstein A., Podolsky B., Rosen N. Can quantum-mechanical description of physical reality be considered complete? // Physical review. 1935. № 47. P. 777–780.
, так как в теории Эйнштейна скорость света (300 000 километров в секунду) применялась для вычисления абсолютного предельного фактора скорости, с которой один объект может влиять на другой. Объекты не должны быть в состоянии влиять на другие объекты быстрее, чем один объект мог бы достичь другого со скоростью света.
Тем не менее современные физики, такие как Алан Аспект и его коллеги в Париже, убедительно продемонстрировали, что скорость света не является абсолютным внешним пределом субатомного мира. Эксперимент Аспекта по вычленению двух протонов из одного атома показал: измерения одного протона мгновенно воздействовали на позицию другого [32] Aspect A. et al. Experimental tests of Bell’s inequalities using time— varying analyzers // Physical review letters. 1982. № 49. P. 1804–1807; Aspect A. Bell’s inequality test: more ideal than ever // Nature. 1999. № 398. P. 189–190.
, так что тот принимал ту же или, как выразился ЭВМ-физик Чарльз Н. Беннет, «противоположную судьбу» [33] Science fact: scientists achieve Star-Trek-like feat // The associated press. 1997. December 10; опубликовано на сайте CNN http://edition.cnn.com/TECH/9712/10/beam.me.up.ap.
– то есть направление вращения или позицию.
Два протона продолжают взаимодействовать друг с другом – что бы ни случилось с одним, с другим происходит то же самое либо абсолютно противоположное. В настоящее время даже самые консервативные физики принимают нелокальность как некое странное свойство субатомной реальности [34] Нелокальность считается доказанной экспериментами Аспекта с коллегами в 1982 году в Париже.
.
Большая часть квантовых экспериментов включает в себя неравенство Белла. Известный в квантовой физике эксперимент был проведен Джоном Беллом, ирландским физиком, разработавшим практический инструментарий для исследования того, как на самом деле ведут себя квантовые частицы [35] Bell J. S. On the Einstein-Podolsky-Rosen paradox // Physics. 1964. № 1. P. 195–200.
. В этом простом тесте необходимо найти две квантовые частицы, которые когда-то контактировали между собой, затем разъединить их и провести измерения. Это можно уподобить человеческой паре, скажем, Дафне и Теду, которые были вместе, а потом разошлись. Дафна может пойти в любом из двух возможных направлений, так же как и Тед. Здравый смысл говорит нам, что выбор Дафны никак не будет зависеть от Теда.
Читать дальше
Конец ознакомительного отрывка
Купить книгу