Майкл Шермер - Магия чисел. Ментальные вычисления в уме и другие математические фокусы

Здесь есть возможность читать онлайн «Майкл Шермер - Магия чисел. Ментальные вычисления в уме и другие математические фокусы» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Манн, Иванов и Фербер, Жанр: Психология, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия чисел. Ментальные вычисления в уме и другие математические фокусы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Каждый из нас способен умножать, делить, возводить в степень и производить другие операции над большими числами в уме и с большой скоростью. Для этого не нужно решать десятки тысяч примеров и учиться годами — достаточно использовать простые приемы, описанные в этой книге. Они доступны для людей любого возраста и любых математических способностей.
Эта книга научит вас считать в уме быстрее, чем на калькуляторе, запоминать большие числа и получать от математики удовольствие.

Магия чисел. Ментальные вычисления в уме и другие математические фокусы — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия чисел. Ментальные вычисления в уме и другие математические фокусы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если хотите, то для проверки ответа можно использовать модульные суммы. Разница здесь (по сравнению со сложением) в том, что нужно вычитать их и затем сравнить полученное число с модульной суммой ответа.

Существует еще одно ухищрение Если разница модульных сумм отрицательна или - фото 195

Существует еще одно ухищрение. Если разница модульных сумм отрицательна или равна 0, прибавьте к ней 9. Например:

КВАДРАТНЫЕ КОРНИ НА БУМАГЕ С появлением карманных калькуляторов метод ручки и - фото 196
КВАДРАТНЫЕ КОРНИ НА БУМАГЕ

С появлением карманных калькуляторов метод ручки и бумаги для вычисления квадратных корней практически ушел в небытие. Вы уже научились устно оценивать квадратные корни. Сейчас я покажу, как найти точное значение квадратного корня с помощью ручки и бумаги.

Помните, как в разделе приближенной оценки квадратных корней мы вычисляли квадратный корень из девятнадцати?

Взглянем на задачу еще раз, используя метод, который даст вам точное значение квадратного корня.

Я опишу этот метод как универсальный который годится для любой ситуации и - фото 197

Я опишу этот метод как универсальный, который годится для любой ситуации, и проиллюстрирую примером, приведенным выше.

Шаг 1.Если количество цифр до десятичной запятой равно 1, 3, 5, 7 или любому другому нечетному числу, то первая цифра ответа (или частного) будет наибольшим числом, квадрат которого меньше первой цифры исходного числа. Если количество цифр до запятой равно 2, 4, 6 или любому другому четному числу, то первая цифра частного будет наибольшим числом, квадрат которого меньше первых двух цифр делимого. В данном случае 19 — двузначное число, поэтому первая цифра частного будет наибольшим числом, квадрат которой меньше 19. Это число 4.

Шаг 2.Вычитаем квадрат числа, найденного на шаге 1, из исходного числа и затем сносим еще две цифры. Так как 4 2= 16, вычитаем 19–16 = 3. Сносим два нуля, получая 300 в качестве текущего остатка.

Шаг 3.Удваиваем существующее частное (игнорируя знаки после запятой) и оставляем после него пустое место. Здесь 4 х 2 = 8. Запишите 8_ х _ слева от текущего остатка (300 в данном случае).

Шаг 4.Следующая цифра частного будет наибольшим числом, которое может заполнить пропуски таким образом, чтобы результат умножения был меньше или равен текущему остатку. В данном случае это 3, поскольку 83 х 3 = 249, тогда как 84 х 4 = 336, что превышает остаток 300. Запишите это число в верхней строчке, где записываете ответ, над второй цифрой следующих двух чисел; в данном случае цифра 3 будет находиться над вторым нулем. Теперь имеем ответ в виде 4,3.

Шаг 5.Если вы хотите получить больше цифр в ответе, вычтите произведение из остатка (например, 300–249 = 51) и снесите следующие две цифры; в данном случае 51 превратится в 5100, что станет текущим остатком. Теперь повторите шаги 3 и 4.

Для получения третьей цифры квадратного корня удвойте частное, снова игнорируя все цифры после запятой: 43 х 2 = 86. Поместите 86_ х _ слева от 5100. Цифра 5 даст нам 865 х 5 = 4325, наибольшее произведение, которое меньше 5100.

Пятерка будет стоять в ответе сверху над следующими двумя числами, в данном случае над двумя нулями. Теперь ответ: 4,35. Для получения большего количества цифр после запятой повторите процедуру, как мы сделали в примере.

А вот пример нечетного количества цифр перед запятой.

Теперь вычислим квадратный корень из четырехзначного числа В данном случае - фото 198

Теперь вычислим квадратный корень из четырехзначного числа. В данном случае (как и с двузначными числами) учитываем первые две цифры примера для определения первой цифры квадратного корня.

Наконец если число из которого извлекается квадратный корень имеет - фото 199

Наконец, если число, из которого извлекается квадратный корень, имеет правильный (полный) квадрат, то узнать об этом можно, если в итоге получается нулевой остаток.

Например:

УМНОЖЕНИЕ НА БУМАГЕ Для умножения с ручкой и бумагой я использую метод - фото 200
УМНОЖЕНИЕ НА БУМАГЕ

Для умножения с ручкой и бумагой я использую метод крестнакрест, который позволяет записать весь ответ целиком в одну строчку и нигде не фиксировать промежуточные результаты! Это одна из самых впечатляющих демонстраций магии чисел, когда в вашем распоряжении есть ручка и бумага. Многие вычислители из прошлого заработали себе репутацию «молниеносных» именно этим методом. Они получали два огромных числа и записывали ответ почти мгновенно. Методу крест-накрест лучше всего обучаться на примере.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия чисел. Ментальные вычисления в уме и другие математические фокусы»

Представляем Вашему вниманию похожие книги на «Магия чисел. Ментальные вычисления в уме и другие математические фокусы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия чисел. Ментальные вычисления в уме и другие математические фокусы»

Обсуждение, отзывы о книге «Магия чисел. Ментальные вычисления в уме и другие математические фокусы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x