Владимир Сурдин - Солнечная система (Астрономия и астрофизика)

Здесь есть возможность читать онлайн «Владимир Сурдин - Солнечная система (Астрономия и астрофизика)» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: М.: ФИЗМАТЛИТ, Жанр: Прочая научная литература. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Солнечная система (Астрономия и астрофизика): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Солнечная система (Астрономия и астрофизика)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Вторая книга серии «Астрономия и астрофизика» содержит обзор текущего состояния изучения планет и малых тел Солнечной системы. Обсуждаются основные результаты, полученные в наземной и космической планетной астрономии. Приведены современные данные о планетах, их спутниках, кометах, астероидах и метеоритах. Изложение материала в основном ориентировано на студентов младших курсов естественно-научных факультетов университетов и специалистов смежных областей науки. Особый интерес книга представляет для любителей астрономии.

Солнечная система (Астрономия и астрофизика) — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Солнечная система (Астрономия и астрофизика)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Эволюция планетной системы

Если предположить, что планеты притягиваются только Солнцем и не оказывают воздействия друг на друга, то они описывают кеплеровские эллипсы. Каждая планета с некоторым периодом Т возвращается на прежнее место. Периоды у планет различны и общего для всех периода не существует. Так что движение планетной системы не является периодическим с точки зрения математики. Напомню, что в математике явление называется Т -периодическим, если по прошествии времени Т система возвращается в прежнее состояние. Но в природе лишь исключительно простые процессы могут быть такими, например, колебания маятника.

Рассмотрим более сложную систему: смена времен года. Скажем, 1 июля в одном и том же месте в разные годы погода бывает разной, и можно говорить лишь о приблизительной периодичности. Но точные науки не терпят приблизительных терминов. Изобретено понятие квазипериодичности для явления, раскладывающегося на сумму периодических (создателем теории квазипериодических функций был рижский профессор П.Г. Боль).

Невозмущенное движение планет квазипериодично. В сумму скольких периодических процессов оно раскладывается? Вопрос кажется тривиальным — конечно, n , если через n обозначить число планет. Это так, но нельзя ли уменьшить число процессов до n 0 ? Оказывается, иногда можно. Рассмотрим два процесса с периодами Т 1 и Т 2 . Пусть T 1/T 2=р 1/р 2 , где р 1 , р 2 — целые взаимно-простые числа. Тогда оба процесса имеют общий период Т=р 2Т 1=р 1Т 2 . Например, если две планеты имеют периоды обращения Т 1 и T 2 , то по прошествии времени Т первая планета совершит р 2 оборотов, вторая — р 1 оборотов и обе окажутся на прежнем месте. В таком случае говорят о резонансе, точнее, о резонансе р 1:p 2 в движении планет. Если же таких целых чисел p 1 , р 2 не существует, то говорят об отсутствии резонанса в системе.

Итак, при отсутствии резонанса в системе из n планет имеется n независимых периодов, в случае резонанса число последних n 0 меньше n .

Маленькое пояснение. Сформулированное определение резонанса прекрасно с математической точки зрения, но не годится в естественных науках. Ведь речь идет о рациональности или иррациональности числа η=Т 1/Т 2 . Только в модельных задачах периоды известны точно и определение имеет смысл. В реальности Т 1 , Т 2 измеряются с некоторой погрешностью. Как бы мала она ни была, различить рациональный и иррациональный случай невозможно в принципе. На практике важно, можно ли представить число η в виде отношения двух небольших целых чисел р 1:p 2 плюс малая поправка, или нельзя. Если можно, то по прошествии небольшого времени Т система практически вернется в прежнее положение. Например, пусть η=2/3+10 —4π . По истечении времени Т=ЗТ 1 первый процесс вернется в прежнее положение, а фаза второго сместится всего на тысячную долю окружности, т.е. на треть градуса. Резонанс налицо. Если нельзя, то система вернется в близкое положение очень нескоро. Пусть, например, η=1597/987 (подходящая дробь для «золотого» числа (1+√5)/2 ). Система вернется в прежнее положение только через огромное время 987Т 1=1597Т 2 . Резонанса нет.

Оказывается, наша Солнечная система устроена так, что массивные тела (восемь больших планет от Меркурия до Нептуна) не резонируют друг с другом. Если перевести колебания планет (а по каждой из координатных осей они колеблются!) в звуковые, то мы услышим не «музыку сфер», а что-то вроде какофонии в оркестре к концу антракта, когда каждый музыкант независимо от других настраивает свой инструмент. Напротив, среди малых тел много резонирующих с большими и друг с другом. Таковы десятки спутников, тысячи малых планет и даже Плутон (напомню, что его масса в шесть раз меньше лунной). Пока он делает два оборота вокруг Солнца, Нептун успевает обежать его ровно три раза.

Примем теперь во внимание взаимное притяжение небесных тел. Масса самой большой планеты, Юпитера, в тысячу с небольшим раз меньше Солнечной. Примерно во столько же раз ускорение каждой планеты, вызванное притяжением других планет, меньше ускорения к Солнцу. Дифференциальное уравнение движения можно записать в форме

w=F 0+µF 1 (10)

Здесь индексом 0 отмечено основное ускорение, индексом 1 — вызванное притяжением планет друг к другу возмущающее ускорение; малый параметр µ~0,001 . Уравнений типа (10) надо написать несколько, по числу планет. Движение при µ=0 нам известно. При истинном малом значении µ траектория чуть-чуть отклоняется от невозмущенной. Допустимо считать, что орбита по-прежнему является эллипсом, но его элементы (большая полуось, эксцентриситет и т.д.) медленно меняются со временем со скоростью порядка µ . Этот прием мы уже рассматривали на примере ИСЗ.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Солнечная система (Астрономия и астрофизика)»

Представляем Вашему вниманию похожие книги на «Солнечная система (Астрономия и астрофизика)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Солнечная система (Астрономия и астрофизика)»

Обсуждение, отзывы о книге «Солнечная система (Астрономия и астрофизика)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x