Анри Пуанкаре - Теорема века. Мир с точки зрения математики

Здесь есть возможность читать онлайн «Анри Пуанкаре - Теорема века. Мир с точки зрения математики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2020, ISBN: 2020, Жанр: Прочая научная литература, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Теорема века. Мир с точки зрения математики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Теорема века. Мир с точки зрения математики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре)
Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!

Теорема века. Мир с точки зрения математики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Теорема века. Мир с точки зрения математики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

К несчастью, это не всегда возможно и достаточно. Иногда необходимо, чтобы умозрение предшествовало опыту. Я ограничусь одним примером, который всегда поражал меня: разлагая белый свет, я могу выделить узкую полосу спектра, но, как бы мала она ни была, она будет иметь известную ширину. Точно так же естественные монохроматические источники света дают нам линию тонкую, но не до бесконечности. Кто-нибудь мог бы предположить, что, подвергая экспериментальному изучению эти естественные источники, употребляя все более и более тонкие спектральные линии и в конце концов переходя, так сказать, к пределу, удалось бы достигнуть знания свойств строго монохроматического света. Но это было бы неточно. Пусть мы имеем два луча, испускаемые одним и тем же источником; пусть мы сначала поляризуем их во взаимно перпендикулярных плоскостях, затем приведем к одной плоскости поляризации и, наконец, заставим интерферировать. Интерференция произошла бы, если бы свет был строго монохроматичен; но при наших лишь приближенно монохроматических источниках интерференция не произойдет, как бы узка ни была взятая спектральная линия; чтобы явление имело место, она должна была бы быть во много миллионов раз уже, чем самые тонкие известные нам линии.

Таким образом, в этом случае переход к пределу обманул бы нас; здесь теоретическая мысль должна была идти впереди опыта, и если она успела в этом, то лишь потому, что инстинктивно руководилась соображением простоты.

Знание элементарного факта позволяет нам сформулировать задачу в виде уравнения; отсюда путем некоторых комбинаций остается только вывести заключение о сложном факте, подлежащем наблюдению и проверке. Это – не что иное, как интегрирование, которое уже составляет дело математика.

Можно задать вопрос: почему в физических науках обобщение так охотно принимает математическую форму? Причина этого теперь понятна: она состоит не только в том, что приходится выражать числовые законы, но и в том, что наблюдаемое явление есть результат суперпозиции большого числа элементарных явлений, подобных друг другу: значит, здесь вполне естественно появиться дифференциальным уравнениям.

Однако недостаточно, чтобы каждое элементарное явление подчинялось простым законам; все подлежащие сочетанию явления должны подчиняться одному и тому же закону. Только в этом случае математика может принести пользу, потому что она научит нас сочетать подобное с подобным. Цель ее – предсказывать результат сочетания, не проделывая его шаг за шагом на самом деле. Когда приходится повторять несколько раз одну и ту же операцию, математика позволяет нам избежать этого повторения и путем особого рода индукций заранее узнать нужный результат. Я изложил этот прием выше, в главе о математическом умозаключении. Однако для этого необходимо, чтобы все эти операции были подобны друг другу; в противном случае, очевидно, пришлось бы на деле выполнить их одну за другой и помощь математики оказалась бы ненужной.

Таким образом, возможность рождения математической физики обусловлена приблизительной однородностью изучаемого предмета. Это условие не выполняется в биологических науках: здесь мы не находим ни однородности, ни относительной независимости разнородных частей, ни простоты элементарного явления. Вот почему биологи вынуждены прибегать к иным приемам обобщения.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Примечания

1

См. Le Roy. Science et Philosophie // Revue de Métaphysique et de Morale. 1901.

2

Термином «рекурренция» (recurrence) обозначается логическая операция возврата к своему началу. – Прим. ред.

3

Сюда входят специальные соглашения, служащие для определения сложения; о них мы будем говорить ниже.

4

Analysis Situs – анализ положения, в современной терминологии – топология. – Прим. ред .

5

То есть коррелятивным движением нашего собственного тела (см. выше). – Прим. ред .

6

Revue de Métaphysique et de Morale. Janvier, 1898. Т. 6. Р. 1–13. Статья вышла в виде второй главы книги «Ценность науки», см. наст. изд. Ранее перевод ее публиковался: Пуанкаре. Избранные труды. Т. 3. М.: Наука, 1974. С. 419; Принцип относительности. М.: Атомиздат, 1973. – Прим. ред .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Теорема века. Мир с точки зрения математики»

Представляем Вашему вниманию похожие книги на «Теорема века. Мир с точки зрения математики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Коротыш Сердитый - С точки зрения чужого (СИ)
Коротыш Сердитый
Отзывы о книге «Теорема века. Мир с точки зрения математики»

Обсуждение, отзывы о книге «Теорема века. Мир с точки зрения математики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x