Джона Лерер - Как мы принимаем решения

Здесь есть возможность читать онлайн «Джона Лерер - Как мы принимаем решения» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2011, ISBN: 2011, Издательство: ООО “Издательство Астрель” CORPUS, Жанр: Прочая научная литература, Психология, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как мы принимаем решения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как мы принимаем решения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Каждое мгновение мы принимаем решения: от очень важных до малозначимых и повседневных. Именно это свойство — умение делать свободный выбор — и делает человека человеком. Но как это происходит? Как работает мозг, в доли секунды обрабатывающий колоссальный объем информации? Как соотносятся разум и интуиция? Эти вопросы занимают не только философов и нейрофизиологов, но и каждого из нас. Джона Лерер, американский журналист и всемирно известный популяризатор науки, не только увлекательно описывает, как устроен механизм принятия решений. Книга «Как мы принимаем решения» рассказывает и о том, как происходит процесс выбора, и одновременно помогает сделать этот процесс эффективнее.

Как мы принимаем решения — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как мы принимаем решения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако того же нельзя сказать об игроках. Одним из лучших игроков в нарды в мире сейчас является компьютерная программа. В начале 1990-х годов Джеральд Тезауро, программист из компании IBM, начал разрабатывать новый вид искусственного интеллекта (ИИ). В то время большинство программ ИИ основывались на примитивных вычислительных возможностях микросхем. Этот подход был использован в Deep Blue , мощном суперкомпьютере IBM, сумевшем в 1997 году побить шахматного гроссмейстера Гарри Каспарова. Deep Blue мог анализировать более двухсот миллионов возможных шахматных ходов в секунду и, таким образом, имел возможность постоянно выбирать оптимальную шахматную стратегию. (Мозг Каспарова, напротив, мог просчитывать лишь около пяти ходов в секунду.) Но вся эта стратегическая огневая мощь требовала большого количества энергии: во время шахматного матча Deep Blue был пожароопасен и требовал специального охлаждающего оборудования, чтобы не загореться. Между тем Каспаров даже практически не вспотел. Дело в том, что человеческий мозг — прекрасный образец производительности: даже когда он погружен в глубочайшие раздумья, кора головного мозга потребляет меньше энергии, чем электрическая лампочка.

В то время как массовая пресса превозносила потрясающее достижение Deep Blue — машина переиграла самого великого шахматиста в мире, — Тезауро был озадачен ограниченностью ее возможностей. Машина, способная думать в миллионы раз быстрее, чем ее человеческий противник, с трудом выиграла матч. Тезауро понял, что проблемой всех стандартных программ ИИ, даже таких блестящих, как у компьютера Deep Blue , является негибкость. Большая часть интеллекта Deep Blue была заимствована у других шахматных гроссмейстеров, чья мудрость была оцифрована и заложена в его программу. (Программисты из IBM также изучили предыдущие шахматные матчи Каспарова и настроили программу на использование его повторяющихся стратегических ошибок.) Но сама машина не могла учиться. Вместо этого она принимала решения, предсказывая вероятные последствия нескольких миллионов различных шахматных ходов. Ход с максимальной предсказанной «ценностью» был тем, который компьютер в результате и совершал. Для Deep Blue игра в шахматы была просто бесконечной серией математических задач.

Конечно, такой вид искусственного интеллекта не является точной моделью человеческого сознания. Каспаров смог соревноваться на том же уровне, что и Deep Blue , хотя его мозг обладал гораздо меньшей вычислительной мощностью. Удивительная догадка Тезауро состояла в том, что нейроны Каспарова были так эффективны потому, что они сами себя натренировали. Их усовершенствовал многолетний опыт выявления едва различимых пространственных шаблонов на шахматной доске. В отличие от Deep Blue, анализировавшего каждый возможный ход, Каспаров мог сразу взвесить возможные стратегические варианты и сосредоточить свои умственные силы на оценке только самых перспективных из них.

Тезауро решил создать программу ИИ, которая бы действовала как Гарри Каспаров. Для своей модели он выбрал нарды (backgammon) и назвал программу TD-Gammon. (TD, temporal difference , означает «временное различие»). Deep Blue был изначально запрограммирован на игру в шахматы, а программа Тезауро начинала с чистого листа. Сначала ее ходы были совершенно случайными. Она проигрывала каждый матч и делала глупые ошибки. Но компьютер недолго оставался новичком — TD-Gammon был запрограммирован так, чтобы учиться на собственном опыте. Днем и ночью он играл в нарды сам с собой, терпеливо выясняя, какие ходы наиболее эффективны. После сотен тысяч партий TD-Gammon мог выиграть у лучших человеческих игроков в мире.

Как машина превратилась в эксперта? Хотя математические подробности программы Тезауро утомительно сложны, базовый подход крайне прост [13] Модель TD-leammg (temporal difference learning — обучение временным различиям), использованная Тезауро, основывалась на новаторской работе специалистов в области теории вычислительных машин Рича Саттона и Эндрю Барто. В начале 1980-х годов, будучи аспирантами в Университете Массачусетса в городе Амхерст, Саттон и Барто попытались создать модель искусственного интеллекта, способную обучаться простым правилам и поступкам и применять их для достижения цели. Это была смелая идея, научные наставники пытались отговорить их от бесплодных попыток, но молодые ученые были упрямы. «Это всегда было недостижимой целью в информатике, — говорит Саттон. — Марвин Мински написал диссертацию об обучении с подкреплением и практически сдался. Он пришел к выводу, что это невозможно, и покинул эту область. К счастью для нас, он был не прав. Мы знали, что даже простейшие животные способны к самообучению (никто не учит птицу, как ей искать червяков), мы просто не знали, как они это делают». . TD-Gammon порождал набор предсказаний о том, как будет развиваться игра в нарды. В отличие от Deep Blue , это компьютерная программа не исследовала каждое возможное перемещение. Вместо этого она действовала как Гарри Каспаров и порождала предсказания, основываясь на своем прошлом опыте. Программное обеспечение сравнивало эти предсказания с реальным ходом игры. Выявленные несоответствия становились материалом для обучения, и программа стремилась постоянно сокращать «ложный сигнал». В результате точность предсказаний постоянно росла, и, следовательно, стратегические решения программы становились все более эффективными и разумными.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как мы принимаем решения»

Представляем Вашему вниманию похожие книги на «Как мы принимаем решения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Алексей Номейн - Как принимать решения
Алексей Номейн
Роберт Диленшнайдер - Как мы принимаем решения
Роберт Диленшнайдер
Джона Лерер - Книга о любви
Джона Лерер
Отзывы о книге «Как мы принимаем решения»

Обсуждение, отзывы о книге «Как мы принимаем решения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x